Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Характеристики блоков ПК




Блок-схема и состав ПК

Блок-схема ЭВМ

Е поколение, с 1975 года

Особенности ЭВМ:использование при создании компьютеров больших интегральных схем (БИС – 1000 – 100000 компонентов на кристалл) и сверхбольших интегральных схем (СБИС – 100 тыс. – 10 млн элементов на кристалл). Началом данного поколения считают 1975 год – фирма Amdahl Corp. выпустила шесть компьютеров AMDAHL 470 V/6, в которых были применены БИС в качестве элементной базы. Стали использоваться быстродействующие системы памяти на интегральных схемах емкостью в несколько мегабайт. При включении машины запуск системы осуществляется с использованием хранимой в ПЗУ программы самозагрузки, обеспечивающей выгрузку операционной системы и резидентного программного обеспечения. В середине 70-х появились первые персональные компьютеры (ПК).

Быстродействие (количество операций в секунду):десятки и сотни млн.

Программное обеспечение: б азы и банки данных

Примеры:суперкомпьютеры (многопроцессорная архитектура и использование принципа параллелизма), широкое использование ПК.

Перспективы эволюции ЭВМ 5-го поколения:

Главный упор при создании компьютеров делается на их «интеллектуальность», внимание акцентируется не столько на элементной базе, сколько на переходе от архитектуры, ориентированной на обработку данных, к архитектуре, ориентированной на обработку знаний – использование и обработка компьютером знаний, которыми владеет человек для решения проблем и принятия решений.

Особенности ЭВМ: вычислительные системы с многими десятками параллельно работающих микропроцессоров, позволяющих строить эффективные системы обработки знаний; параллельно-векторная структура. Оптоэлектронные ЭВМ с массовым параллелизмом и нейронной структурой – с распределенной сетью большого числа (десятки тысяч) микропроцессоров, моделирующих архитектуру нейронных биологических систем.

В этой главе рассмотрим архитектуру вычислительной машины, в том числе и персонального компьютера (ПК). Архитектура определяет принципы организации вычислительной системы и функции отдельных устройств системы, не уточняя, как эти принципы реализуются внутри ЭВМ. Основные принципы и схему устройств первых вычислительных машин (рис.2.1.) предложил коллектив ученых во главе с Джоном фон Нейманом. Эти принципы работы во многом сохранились и в современных компьютерах.

Принципы Джона фон Неймана:

1. Принцип двоичного кодирования. В соответствии с этим принципом вся информация кодируется с помощью двоичных сигналов (битов). Ранее для этой цели использовалась десятичная система счисления. 2. Принцип программного управления. Программа состоит из набора команд, которые выполняются процессором друг за другом в определенной последовательности. 3. Принцип однородности памяти. Программы и данные хранятся в одной и той же памяти. 4. Принцип адресуемости памяти. ОП состоит из пронумерованных ячеек и процессору в любой момент времени доступна любая ячейка.

Разработанные фон Нейманом основы архитектуры вычислительных устройств оказались настолько фундаментальными, что получили в литературе название «фон-неймановской архитектуры». На базе структуры ЭВМ фон Неймана проектировались вычислительные машины с первого по четвертое поколений. В дальнейшем центральные устройства АЛУ и УУ были объединены в единый блок, называемый центральным процессором (ЦП),

Рис. 2.1. Блок – схема ЭВМ по Нейману

который непосредственно осуществляет процесс обработки данных и программное управление этим процессом. (Если ЦП реализован в виде большой интегральной схемы, то он называется микропроцессором МП). Такая блок-схема представлена на рис. 2.2. с указанием минимального набора функциональных блоков.

· Процессор, который включает арифметико-логическое устройство (АЛУ), служащее для выполнения арифметических и логических операций, и устройство управления (УУ).

· Память для хранения программ, исходных данных и результатов расчета (ЗУ – запоминающее устройство).

· Устройства для ввода исходных данных и для вывода результатов (УВВ).

 

В ЭВМ (рис. 2.2) происходит последовательное считывание команд из памяти и их выполнение. Номер (адрес) очередной ячейки памяти, из которой будет извлечена следующая команда программы, указывается специальным устройством – счетчиком команд в УУ. Его наличие также является одним из характерных признаков рассматриваемой архитектуры. Подавляющее большинство вычислительных машин на сегодняшний день – фон-неймановские машины. Исключение составляют лишь отдельные разновидности систем для параллельных вычислений, в которых отсутствует счетчик команд, не реализована классическая концепция переменной и имеются другие существенные принципиальные отличия от классической модели (примерами могут служить потоковая и редукционная вычислительные машины). Вероятно, в ЭВМ пятого поколения будет другая архитектура,

Рис.2.2. Структура ЭВМ

 

отличная от фон-неймановской, учитывая тот факт, что в основе обработки информации будут использоваться не вычислительные алгоритмы, а алгоритмы искусственного интеллекта, логические выводы и т.п.

Персональный компьютер (ПК) – универсальная ЭВМ, предназначенная для индивидуального пользования. В основе схемного решения ПК заложен принцип открытой архитектуры, что позволяет собирать ПК из отдельных узлов и деталей, а также при наличии в ПК внутренних расширительных гнезд использовать дополнительные устройства, удовлетворяющие заданному стандарту (рис. 2.3). Связь между устройствами ПК осуществляется с помощью сопряжений, называемых интерфейсами, которые представляет собой совокупность стандартизованных аппаратных и программных средств, обеспечивающих обмен информацией между устройствами. В основе построения интерфейсов лежат унификация и стандартизация (использование единых способов кодирования данных, форматов данных, стандартизация разъемов и т.д.). Наличие стандартных интерфейсов позволяет унифицировать передачу информации между устройствами независимо от их особенностей. В персональных компьютерах, как правило, используется структура с одним общим интерфейсом, называемым системной шиной. При такой структуре все устройства ПК обмениваются информацией и управляющими сигналами через системную шину (рис. 2.3). Физически она представляет собой систему функционально объединенных проводов, по которым передаются три потока данных: непосредственно информация, управляющие сигналы и адреса. Количество проводов в системной шине, предназначенных для передачи непосредственно информации, называется разрядностью шины. Разрядность шины соответствует числу битов информации, которое может передаваться по шине одновременно, а количество проводов для передачи адресов (адресных линий) определяет, какой объем оперативной памяти может быть адресован. Поскольку шина является общей для всех устройств компьютера, в нем предусмотрена система приоритетных прерываний, устанавливающая, какое из устройств системы займет шину в данный момент времени. Поэтому каждому устройству, подключенному к шине, присваивается определенный приоритет.

Достоинства ЭВМ с шинной структурой:

· простота и, как следствие, невысокая стоимость;

· гибкость, так как унификация связи между устройствами позволяет достаточно легко включать в состав ПК дополнительные устройства, т.е. легко модифицировать конфигурацию компьютера.

Недостатком является снижение производительности системы из-за задержек, связанных со временем ожидания устройствами возможности занять шину, пока осуществляется передача информации между устройствами с более высоким приоритетом. Для преодоления этого недостатка в ПК может использоваться архитектура с двумя шинами.

 

Визуально пользователю видны только системный блок, монитор, компьютерная мышь, клавиатура и другие внешние устройства. Рассмотрим подробнее основные составные части персонального компьютера.

В состав системного блока входят:

1. Центральный процессор (ЦП) – микропроцессор (МП);

2. Вентилятор центрального процессора;

3. Системная плата («материнская»);

4. Оперативная память;

5. Жёсткий диск;

6. Видеокарта;

7. Дисковод компакт-дисков;

8. Корпус с блоком питания;

9. Вентилятор корпуса;

10. Звуковая карта;

11. Сетевая карта;

12. Модем;

13. Плата USB;

14. Плата 1394.

К системному блоку подключаются:

15. Клавиатура;

16. Мышь;

17. Монитор.

 

 

тактовый клавиатура

генератор

       
   

 


центральный оперативная постоянная

процессор память (ОЗУ) память (ПЗУ)

           
 
     
 





Поделиться с друзьями:


Дата добавления: 2014-12-27; Просмотров: 457; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.021 сек.