Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Методы Рунге-Кутты




 

Методы Рунге-Кутты – это группа методов, широко применяемых на практике для решения ОДУ. В этих методах при вычислении значения искомой функции в очередной точке хi+1 используется информация о предыдущей точке хi, yi. Методы различаются объемом вычислений и точностью результата.

Порядок метода Рунге-Кутты определяется кратностью вычисления значения производной искомой функции f(x,y ) на каждом шаге. В соответствии с этим метод Эйлера является методом Рунге-Кутты первого порядка, поскольку для получения очередного значения yi+1 функция f(x) вычисляется один раз в предыдущей точке хi, yi. В методах Рунге-Кутты более высоких порядков для вычисления очередного значения искомой функции в точке хi+1 значение правой части уравнения y’= f(x,y ) вычисляется несколько раз, количество которых и определяет порядок метода.

Метод Рунге-Кутты 2-го порядка (Усовершенствованный метод Эйлера ). Вычисление значения искомой функции в точке хi+1 проводится в два этапа. Сначала вычисляют вспомогательную величину по методу Эйлера:

(6.5.3-1)

Затем значение производной искомой функции в точке (xi+1,yi+1) используется для вычисления окончательного значения функции:

(6.5.3-2)

Подставляя (6.5.3-1) в (6.5.3-2), окончательно получим расчетную формулу метода Рунге-Кутты 2 -го порядка:

(6.5.3-3)

Этот метод также называют методом прогноза и коррекций. Сначала находят грубое приближение по методу Эйлера (прогноз), а затем уточненное значение yi+1 (коррекция).

В общем виде формулу (6.5.3-3) можно представить как

(6.5.3-4)

Метод Рунге-Кутты второго порядка имеет наглядную геометрическую интерпретацию (рис. 6.5.3-1). Построение проводится следующим образом: определяется пересечением перпендикуляра, восстановленного из точки xi+1 c касательной L1, проведенной к кривой y(x) в предыдущей точке (хi,yi). Затем в точке проводится прямая L2 с тангенсом угла наклона, равным . Прямую проводят через точку под углом, тангенс которого находим усреднением значений тангенсов углов наклона L1 и L2. Прямая L проводится параллельно через точку (хi,yi). Ее пересечение с перпендикуляром, восстановленным из точки хi+1, и дает уточненное значение yi+1.

Рис. 6.5.3-1

 

Погрешность метода Рунге-Кутты второго порядка связана с величиной шага интегрирования отношением e2 =C2h3, где C2– произвольная постоянная.

 

Пример 6.5.3-1. Решить методом Рунге-Кутты второго порядка ОДУ y¢= 2x/y с начальными условиями x0 = 1 и y0 = 1 на отрезке [1;1.4] и шагом h = 0.2.

Проводя дальнейшее обобщение формул Рунге-Кутты, для решения ОДУ первого порядка можно записать следующее:

где Ф – линейная функция аргументов x, y, h и f(x,y), которая может быть представлена как

(6.5.3-5)

Величина n в (6.5.3-4) определяется порядком метода, а коэффициентам a2,a3, …,an, Р1, Р2, …,Pn подбирают такие значения, которые обеспечивают минимальную погрешность. Так, для метода Рунге-Кутты четвертого порядка (n=4) получена расчетная формула при следующих коэффициентах: a2= a3=1/2, a4=1, P1 = P4=1/6, P2 = P3 =2/6.

Подставив значения коэффициентов в (6.5.3-4), имеем

(6.5.3-6)

Геометрическая интерпретация этого метода очень сложна и потому не приводится.

Погрешность метода Рунге-Кутты четвертого порядка значительно меньше методов первого и второго порядков и пропорциональна величине h (e4 =C4h5).

 

Пример 6.5.3-2. Решить методом Рунге-Кутты четвертого порядка ОДУ y¢= 2x/y с начальными условиями x0 = 1 и y0 = 1 на отрезке [1;1.4] с шагом h = 0,2.

 

Сведем в таблицу результаты решения уравнения y¢=2x/y методами Рунге-Кутты, соответственно, первого (y1i), второго (y2i) и четвертого (y4i) порядков и сравним с результатами, полученными точным методом (yi).

хi y1i y2i y4i yi
1.2 1.4 1.4 1.74286 1.3714 1.7091 1.37115 1.7089 1.37113 1.7088

На практике для обеспечения требуемой точности (при использовании любого приближенного метода решения ОДУ) применяется автоматический выбор шага методом двойного просчета. При этом в каждой точке хi по формуле, соответствующей выбранному методу, производится расчет yi с шагом h (yi(h)) и с шагом h/2 (yi(h/2)). Цель двойного просчета состоит в том, чтобы для каждой точки численного решения эти значения отличались на величину, не превышающую заданной погрешности e. В этом случае общая формула для оценки погрешности решения ОДУ методами Рунге-Кутты имеет следующий вид:

где p – порядок метода Рунге-Кутты. Эта формула называется также правилом Рунге.

Если | yi(h)) - yi(h/2)|< e, то шаг для следующей точки выбирается равным h, иначе шаг уменьшается вдвое и продолжается уточнение y i в точке хi.




Поделиться с друзьями:


Дата добавления: 2014-12-27; Просмотров: 5223; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.016 сек.