Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Сети и технологии ISDN и SDH




Ниже даются краткие сведения о наиболее распространенных телекоммуникационных системах, или территориальных сетях связи. К ним относятся Х.25, Frame Relay (FR), IP, ISDN, SDH, АТМ (сведения о сетях IP даются при рассмотрении глобальной сети Интернет). При этом обращается внимание на их «прогрессивность», т. е. возможность предоставления полного сервиса в настоящее время и степень актуальности в перспективе. Особенно важным преимуществом той или иной сетевой технологии является ее возможность наиболее полно использовать имеющуюся в распоряжении пользователя полосу пропускания канала связи и адаптироваться к качеству канала.

Сети и технологии Х.25 и Frame Relay

 

Сети и технологии Х.25. Сетями Х.25 называются сети, доступ к которым производится в соответствии с рекомендациями Международного консультативного комитета по телефонии и телеграфии (МККТТ), первый вариант которой появился в 1976 г. Эта рекомендация описывает интерфейс доступа пользователя в сеть передачи данных, а также интерфейс взаимодействия с удаленным пользователем через систему передачи данных (СПД). Передача данных в сети Х.25 производится по протоколам, описанным в рекомендации Х.25. С момента выпуска первого варианта рекомендации Х.25 все стандарты были практически проверены, расширены и дополнены, и сегодня достигнут высокий уровень совместимости оборудования, выпускаемого различными фирмами для сетей Х.25.

Несмотря на появление новых интегральных технологий сетей связи, рассчитанных на высокоскоростные каналы связи, сети Х.25 все еще являются наиболее распространенными СПД. Это объясняется тем, что именно сети Х.25 с наибольшим основанием можно сравнить с телефонными сетями: установив соединение компьютера с ближайшим узлом сети Х.25, можно связаться с любым из многих тысяч пользователей сетей Х.25 по всему миру (для этого надо лишь знать его сетевой адрес) точно так же, как подняв трубку телефонного аппарата, подключенного к ближайшей АТС, можно соединиться практически с любым абонентом. Технология Х.25 особенно актуальна для России и других стран, где пока отсутствует развитая инфраструктура высокоскоростных первичных каналов связи.

На основе технологий Х.25 построено большинство эксплуатируемых в настоящее время СПД с коммутацией пакетов, предназначенных для организации и обеспечения надежной передачи данных в условиях разветвленных территориальных сетей на базе низко– и среднескоростных каналов. При этом за счет повторной передачи искаженных кадров между каждой парой соседних узлов сети обеспечивается достоверная и упорядоченная передача данных. Однако в сети с каналами низкого качества из-за повторных передач возникают нерегламентированные и непостоянные задержки передаваемых данных, поэтому передача трафика, чувствительного к задержкам (например, оцифрованного голоса) по сетям Х.25 с удовлетворительным качеством невозможна.

Рекомендация Х.25 описывает три уровня протоколов: физического, канального и сетевого. Они реализуют функции соответственно физического, канального, сетевого и частично транспортного уровней модели взаимодействия открытых систем (BOC – OSI).

Физический уровень, широко представленный в оборудовании массового спроса, описывает уровни сигналов и логику взаимодействия на уровне физического интерфейса.

Канальный уровень, также широко представленный в оборудовании (например, в модемах), отвечает за эффективную и надежную передачу данных в соединении «точка-точка», т. е. между соседними узлами сети Х.25. На этом уровне осуществляется защита от ошибок при передаче между соседними узлами, управление потоком данных и, кроме того, обеспечивается получение оптимального по скорости передачи режима в зависимости от протяженности канала между двумя точками (времени задержки в канале) и качества канала (вероятности искажения информации при передаче), что важно при оценке эффективности функционирования двухточечного соединения.

Для реализации указанных выше функций поток информации разбивается на кадры (frame), каждый из которых представляет собой организованную определенным образом последовательность битов. Кадр обрамляется «флагами» (уникальными последовательностями битов, являющимися разделителем между кадрами) и состоит из служебных полей (поля адреса, поля управления с циклическим номером кадра, поля проверочной последовательности кадра) и информационного поля для информационных кадров. Длину кадра можно менять при настройке параметров протокола к физическим характеристикам линии связи. Чем короче кадр, тем меньше вероятность его искажения при передаче. С другой стороны, если линия хорошего качества, то информацию лучше передавать более длинными кадрами, обеспечивающими уменьшение процента избыточной информации (флаги, служебные поля кадра).

Наконец, на сетевом уровне, определяющем специфику сетей Х.25, производится маршрутизация пакетов (на этом уровне информация также структурируется, т. е. разбивается на «порции», называемые «пакетами») и доведение информации от «точки входа в сеть» до «точки выхода» из нее. Структура пакета во многом аналогична структуре кадра. При передаче пакет помещается в поле данных информационного кадра (кадра канального уровня).

В сетях Х.25 реализуется метод «коммутации пакетов», в соответствии с которым перед передачей информации от одного абонента к другому между ними сначала устанавливается виртуальное (логическое) соединение, т. е. происходит обмен пакетами «запрос вызова» – «вызов принят», после чего производится обмен информацией. Виртуальные соединения могут быть как постоянными, так и коммутируемыми, когда соединение устанавливается под каждый сеанс обмена информацией. Число виртуальных соединений, которые могут одновременно поддерживаться на базе одного физического канала, зависит от конкретного типа оборудования, используемого для поддержания таких соединений.

Доступ пользователей к сети Х.25 осуществляется в одном из двух режимов – в пакетном или монопольном. Доступ с персонального компьютера (ПК) в сеть в пакетном режиме реализуется путем установления в ПК специальной платы, обеспечивающей обмен данными в соответствии со стандартом Х.25. Подключение ЛКС через сеть Х.25 осуществляется с помощью сетевых плат (например, производимых компаниями Microdyne, Newport Systems Solutions и др.) или для этого могут использоваться мосты-маршрутизаторы удаленного доступа, включенные в виде отдаленных устройств и поддерживающие протокол Х.25. Преимущество таких устройств по сравнению с встроенными в компьютер платами (помимо большей производительности) состоит в том, что они не требуют установки специального программного обеспечения, а сопрягаются с ЛКС по стандартному интерфейсу локальной сети, что позволяет реализовать более гибкие и универсальные решения. Подключение пользовательского оборудования к сети в пакетном режиме удобно, когда требуется многопользовательский доступ к этому оборудованию через сеть.

Подключение к сети Х.25 в монопольном режиме производится по стандартам Х.3, Х.28, Х.29, которые определяют функционирование специальных устройств доступа в сеть – «сборщиков-разборщиков пакетов» – ПАД («packet assembler-dissasembler»). Эти устройства используются для доступа в сеть абонентов в асинхронном режиме обмена информацией, т. е. через последовательный порт компьютера (непосредственно или с применением модемов). ПАД обычно имеет несколько асинхронных портов и один синхронный порт (порт Х.25). ПАД накапливает поступающие по асинхронным портам данные, упаковывает их в пакеты и передает через порт Х.25. В разных сетях могут быть установлены различные значения параметров передачи по каналам Х.25 (длина кадра и пакета, система адресации и др.). Для обеспечения стыковки этих сетей была разработана рекомендация Х.75, определяющая правила согласования параметров при переходе из одной сети в другую. Сопряжение сетей обычно производится через ЦКП, в котором реализована поддержка шлюзовых функций.

Метод коммутации пакетов, лежащий в основе сетей Х.25, определяет основные преимущества таких сетей, а следовательно, и области их применения. Преимущества сетей Х.25 заключаются в следующем:

1. Сети Х.25 позволяют в режиме реального времени разделять один и тот же физический канал между несколькими абонентами. Благодаря этому во многих случаях оказывается экономически выгодней для передачи данных пользоваться сетью Х.25, производя оплату за каждый байт переданной информации, а не оплачивать время использования телефонной линии. Метод разделения физического канала между абонентами в сетях Х.25 называют еще логическим, или статистическим уплотнением (в отличие от временного разделения канала). При статистическом разделении канала нет строго регламентированной степени загрузки канала каждым абонентом в определенный момент времени. Эффективность использования статистического уплотнения зависит от статистических или вероятностных характеристик уплотняемых потоков информации. Имеется большой опыт эффективного использования сетей Х.25 для широкого спектра задач передачи данных, когда трафик в сети не является равномерным во времени: обмен сообщениями между пользователями, обращение большого числа пользователей к удаленной базе данных или к удаленному хосту электронной почты, связь локальных сетей (при скоростях обмена не более 128 Кбит/с), объединение удаленных кассовых аппаратов или банкоматов.

2. Сети Х.25 позволяют передавать оптимальным образом данные по выделенным и коммутируемым каналам телефонной сети общего пользования. Критериями оптимизации являются максимально возможные на этих каналах скорость и достоверность передачи данных.

3. В сетях Х.25 имеется механизм альтернативной маршрутизации, с помощью которого, помимо основного маршрута, задается ряд альтернативных (резервных) маршрутов, за счет чего значительно увеличивается надежность работы сети. Однако это означает, что между любыми двумя точками подключения пользователя к сети должно быть, по крайней мере, два различных маршрута.

При всех достоинствах сетевой технологии Х.25 у нее есть и свои довольно серьезные ограничения:

· невозможность передавать по сетям Х.25 такие виды информации, как голос и видеоинформация;

· существенное ограничение скорости передачи, основной причиной которого является наличие в таких сетях развитых механизмов коррекции ошибок. Эти механизмы требуют подтверждения информации между каждыми соседними узлами сети, что приводит к значительным задержкам распространения информации. Поэтому технология Х.25 обычно применяется в сетях, использующих каналы связи со скоростью передачи не более 128 Кбит/с.

Указанные ограничения преодолены в технологии Frame Relay.

Сети и технологии Frame Relay (ретрансляция кадров). Сетью Frame Relay (в дальнейшем – FR) называется сеть коммутации кадров, в которой используется технология (протокол) передачи данных одноименного названия [40]. Протокол FR – это интерфейс доступа к сетям быстрой коммутации пакетов. Он позволяет эффективно передавать крайне неравномерно распределенный вовремени трафик.

Отличительные особенности протокола FR: малое время задержки при передаче информации через сеть, высокие скорости передачи, «высокая степень связности», эффективное использование полосы пропускания. По сетям FR возможна передача не только собственно данных, но и оцифрованного голоса.

Для оценки FR-сетей (как и АТМ-сетей) важным фактором является не столько высокая «физическая» скорость передачи данных (т. е. скорости «физических» каналов), сколько реализация методов статистического уплотнения информации, обеспечивающих существенное повышение информационной скорости передачи в условиях дефицита физической пропускной способности канала, а также наличие интерфейсов для эффективного подключения к сети различных типов оконечных пользовательских устройств.

Протокол FR выполняет функции первого, частичного второго и третьего уровней модели ВОС. Он позволяет устанавливать соединение между взаимодействующими узлами сети, что аналогично соединению по Х.25 в случае, когда используется постоянное виртуальное соединение (PVC). Внутри каждого физического канала может быть создана совокупность PVC (логических каналов), что и объясняет «высокую степень связности», обеспечиваемую протоколом FR. Что касается коммутируемых виртуальных соединений (SVC), то их использование в FR-сетях описывается специальными протоколами.

Сети FR могут выступать альтернативой сетей Х.25. Например, ЛКС могут подключаться к сети непосредственно по интерфейсу FR, и тогда FR-сеть выполняет те же функции по обеспечению взаимодействия удаленных ЛКС, что и сеть Х.25. В других случаях сеть FR выступает в качестве высокоскоростной магистрали для объединения ряда сетей Х.25. Такое решение легко реализуется, так как большинство современных устройств центров коммутации пакетов сетей Х.25 оборудованы портами FR.

В отличие от сетей Х.25, где на сетевом уровне обеспечивается гарантированная передача пакетов (в случае искажения при передаче какого-либо пакета происходит его повторная передача), кадр FR не содержит переменных нумераций передаваемых и подтверждаемых кадров. При межузловом обмене информацией в сетях FR ошибочные кадры просто «выбрасываются», их повторная передача средствами FR не происходит. Для обеспечения гарантированной и упорядоченной передачи кадров необходимо использовать либо протоколы более высокого уровня (например, протокол ТСР/IР), либо дополнение к протоколу FR (например, Q.922).

Кадр FR-сети имеет минимальную избыточность, т. е. доля служебной информации в кадре по отношению к передаваемым данным пользователя минимальна. Это способствует сокращению времени на передачу фиксированного объема информации. Кроме того, в сети FR может производиться маршрутизация своими средствами (без задействования механизмов маршрутизации по Х.25 или по протоколу IP), что значительно увеличивает скорость маршрутизации. Однако такой эффект достигается только при использовании каналов, качество которых соответствует требованиям технологии FR. В противном случае сравнительно много кадров будут передаваться с ошибкой, и потребуется повторная передача кадров, обеспечиваемая дополнительными средствами. Это снизит информационную скорость передачи информации и более эффективной в этом случае станет сеть Х.25.

Эффективность технологии FR достигается также использованием специфических механизмов, управляющих загрузкой сети. Эти механизмы обеспечивают практически гарантированное время доставки кадров через сеть и одновременно дают возможность сети адаптироваться к крайне неравномерным во времени типам трафика (например, к трафику ЛКС).

Стремительному развитию технологии FR и повышению ее эффективности способствует ряд факторов, в частности, улучшение качества каналов связи, использование современного многофункционального каналообразующего оборудования. К новому классу такого оборудования относятся мультимедийные пакетные коммутаторы (МПК).

Коммутаторы МПК, использующие технологию FR для транспортировки информации, совмещают несколько функций:

· статистическое уплотнение каналов передачи данных, при котором фиксированные промежутки времени в уплотняемом канале не предоставляются отдельно каждому каналу, как это имеет место при использовании метода временного уплотнения; информация каждого канала разбивается на отдельные блоки, к блоку прибавляются заголовок, содержащий идентификатор соответствующего канала, и хвост, что образует единицу передачи информации – кадр, с помощью которого могут передаваться все виды трафика. Основные преимущества такого уплотнения: динамическое распределение пропускной способности уплотненного канала связи в зависимости от активности в каналах передачи данных, возможность предоставления пропускной способности по требованию, возможность установки приоритетов для различных видов трафика;

· коммутация и передача различных видов трафика;

· управление потоком информации и установка приоритетов;

· поддержка функций телефонных станций. К функциям АТС, выполняемым МПК, относятся оцифровка и коммутация голоса, передача факсимильных сообщений. Для технологии FR характерным является возможное увеличение задержки при передаче голоса по сравнению с обычной телефонной сетью. Устранить это явление можно путем установления более высокого приоритета для голосового трафика и применения фрагментации кадров.

Распространению технологии FR способствует также наличие стандартов, обеспечивающих совместимость сетей FR с другими сетями. Например, имеется стандарт IETF 1294 для преобразования пакетов TCP/IP в кадры FR. Есть стандарты, обеспечивающие совместимость FR с самыми высокопроизводительными и современными сетями – сетями АТМ. При «входе»в сеть АТМ длинные кадры FR разбиваются на короткие, размещаемые внутри АТМ-ячеек, а при «выходе» из сети АТМ из ячеек АТМ-сети извлекаются фрагменты кадров FR и из них собираются полные кадры FR.

В настоящее время за рубежом, особенно в США, наблюдается стремительное развитие сетей FR. За один 1996-й год число пользователей этих сетей выросло более чем в три раза. В начале 1997 г. около 1800 фирм США строили свои корпоративные сети на базе магистральных сетей FR. Наиболее распространенные способы доступа к сетям FR: использование выделенных линий; через сети Х.25 по обычным коммутируемым телефонным линиям; через ISDN для передачи данных и голоса.

В России большинство сетей передачи данных общего пользования также предоставляют пользователям FR-сервис. Основная проблема с реализацией магистральной сети FR заключается в том, что те магистральные междугородние каналы, которые построены на базе телефонных линий (линий тональной частоты), не обеспечивают необходимое для сети FR качество передачи. Для построения сетей FR самые широкие возможности имеют те предприятия, решения которых основаны на базе оптоволоконных или спутниковых каналов связи.

Технология FR и в будущем сохранит свои преимущества и актуальность, поскольку она обеспечивает идеальный доступ к высокоскоростной магистральной АТМ-сети по низкоскоростным каналам связи. Эта технология в настоящее время является наиболее эффективной для приложений, связанных с интеграцией неравномерного (пульсирующего) трафика локальных сетей и чувствительной к задержке голосовой информации.

 

 

Сети и технологии ISDN. Сети ISDN (Integrated Services Digital Network – цифровая сеть с интеграцией услуг) относятся к классу сетей, изначально предназначенных для передачи как данных, так и голоса. Это сети, обеспечивающие цифровое соединение между оконечными абонентами сети для предоставления широкого набора услуг, к которым пользователи получают доступ через ограниченное число стандартных многофункциональных интерфейсов.

В сетях ISDN используется цифровая технология, получающая все большее распространение, так как:

· цифровые устройства, используемые в ISDN, производятся на основе интегральных схем высокой интеграции; по сравнению с аналоговыми устройствами они отличаются большой надежностью и устойчивостью в работе и, кроме того, в производстве и эксплуатации, как правило, дешевле;

· цифровую технологию можно использовать для передачи любой информации по одному каналу (акустических сигналов, телевизионных видеоданных, факсимильных данных);

· цифровые методы преодолевают многие из ограничений передачи и хранения, которые присущи аналоговым технологиям.

В сетях ISDN при передаче аналогового сигнала осуществляется преобразование его в последовательность цифровых значений, а при приеме – обратное преобразование.

Аналоговый сигнал проявляется как постоянное изменение амплитуды во времени. Например, при разговоре по телефону, который действует как преобразователь акустических сигналов в электрические, механические колебания воздуха (чередование высокого и низкого давления) преобразуются в электрический сигнал с такой же характеристикой огибающей амплитуды. Однако непосредственная передача аналогового электрического сигнала по телефонной линии связи сопряжена с рядом недостатков: искажение сигнала вследствие его нелинейности, которая увеличивается усилителями, затухание сигнала при передаче через среду, подверженность влиянию шумов в канале и др.

В ISDN эти недостатки преодолимы. Здесь форма аналогового сигнала представляется в виде цифровых (двоичных) образов, цифровых значений, представляющих соответствующие значения амплитуды огибающей синусоидальных колебаний в точках, на дискретных уровнях. Цифровые сигналы также подвержены ослаблению и шумам при их прохождении через канал, однако на приемном пункте необходимо отмечать лишь наличие или отсутствие двоичного цифрового импульса, а не его абсолютное значение, которое важно в случае аналогового сигнала. Следовательно, цифровые сигналы принимаются надежнее, их можно полностью восстановить, прежде чем они из-за затухания станут ниже порогового значения.

Подключение пользовательского оборудования к сети ISDN производится на одной из двух стандартных скоростей [39]. Первая из них – «базовая» скорость (BRI – Basic Rate Interface), а вторая – «первичная» (PRI – Primary Rate Interface). При передаче информации по BRI в канале создаются три логических подканала, два из которых, называемые В-каналами, предназначены для передачи «полезной» информации пользователя (в частности, голоса). Каждый из В-каналов требует полосы пропускания 64 Кбит/с. Третий подканал, называемый D-каналом, требует такой же полосы пропускания и используется, прежде всего, для передачи служебной информации, которая определяет порядок обработки информации, передаваемой по В-каналам. Иногда D-канал используется для передачи полезной информации, его полоса пропускания равна 16 Кбит/с. Следовательно, общая полоса пропускания, т. е. скорость передачи, соответствующая интерфейсу BRI, составляет 144 Кбит/с.

Канал PRI имеет свою специфику в разных странах. В США, Канаде и Японии он состоит из двух В-каналов и одного D-канала, каждый из них имеет пропускную способность 64 Кбит/с, а общая пропускная способность PRI-канала равна 1536 Кбит/с (с учетом служебной информации). В Европе канал PRI занимает полосу пропускания 1920 Кбит/с.

Большая полоса пропускания каналов, необходимая для построения сетей ISDM, является основным препятствием на пути их распространения, особенно в странах со слабо развитой инфраструктурой высокоскоростных каналов связи. Однако существуют механизмы, позволяющие строить такие сети, более экономно используя полосу пропускания каналов связи. Один из таких механизмов позволяет уплотнять В-каналы, используемые для передачи голоса. При этом реализуется техника кодирования (преобразования акустических сигналов в цифровой код), получившая название импульсно-кодовой модуляции (ИКМ). В настоящее время техника кодирования голоса шагнула далеко вперед, обеспечивая вполне приемлемое качество голосовой связи при гораздо меньшей полосе пропускания (в одном из практических случаев голосовая информация, передаваемая по каждому из В-каналов, сжимается и передается со скоростью 6,33 Кбит/с [20]).

Преобразование аналоговых сигналов в цифровые осуществляется различными методами. Один из них – импульсно-кодовая модуляция (ИКМ).

По мнению специалистов [30], развитию сетей и технологий ISDN способствуют такие факторы: либерализация и приватизация в области телекоммуникаций (это приводит в появлению новых конкурентов и новых сетевых продуктов); сближение технологий информатизации, телекоммуникаций и отрасли развлечений (это положительно воздействует на развитие кабельного телевидения, спутниковой связи и радиодоступа, при этом на первое место выходит задача обеспечения комплексности предоставления услуг связи); развитие сети Интернет; непрекращающийся рост сетей подвижной связи (эти сети растут значительно быстрее фиксированных сетей, причем наблюдается перераспределение трафика – с фиксированных сетей на сети подвижной связи). Разное состояние этих факторов, выступающих в роли движущих сил развития ISDN-сетей, приводит к различию стратегических и тактических подходов в деле их внедрения в разных странах.

Резкое возрастание роли ISDN-сетей объясняется тем, что они обеспечивают интегрированный доступ к речевым и неречевым услугам, имеют сложившуюся инфраструктуру, являются цифровыми сетями, основанными на использовании цифровых каналов 64 Кбит/с, обладают достаточной гибкостью. Популяризация ISDN-сети возрастает, поскольку по определению она является мультисервисной (обеспечивает услуги по предоставлению связи, доставке информации, а также дополнительные услуги), ориентированной на приложения. Термин «приложение» означает определенную сферу применения ISDN (например, дистанционное обучение), а термин «решение» используется для объяснения, каким образом данное приложение реализуется средствами ISDN (дистанционное обучение осуществляется с помощью услуги видеоконференцсвязи).

Технология ISDN стабильно развивается, а сеть на ее основе имеет необходимые интерфейсы с не ISDN-сетями. Кроме того, имеется большой набор терминального оборудования для ISDN-сетей.

Терминальное оборудование ISDN разбивается на такие группы: цифровые телефонные аппараты, терминальные адаптеры для ПК, оборудование видеосвязи.

Основные средства доступа к сети ISDN: маршрутизаторы или мосты локальных сетей, оконечные сетевые устройства базового и первичного доступа для ВОЛС и медных линий связи, мультиплексоры (для сбора и передачи информации от удаленных абонентов), системы для проведения видеоконференций, мини-УАТС (управленческие автоматические телефонные станции).

Цифровые УАТС с функциями ISDN позволяют: более полно использовать каналы связи для передачи данных и речи, выйти абоненту в сеть ISDN с различных устройств (телефона, факса, компьютера), одновременно передавать речь и данные (если в составе УАТС имеются двухпроводные цифровые телефонные аппараты с расширенными функциями и портом для подключения ПК), подключать мосты или маршрутизаторы для взаимодействия удаленных ЛКС.

Сети и технологии ISDN предоставляют пользователям следующие основные услуги: передача данных со скоростью 64 Кбит/с, передача речи в цифровом виде, телетекст, факс, видеосвязь. При использовании каждой из них абонент может воспользоваться такими дополнительными услугами: организация замкнутых групп пользователей, организация конференцсвязи, предоставление сети своего номера или отказ на предоставление и др.

Таким образом, сети ISDN, основной целью разработки которых было объединение в одной сети трафиков цифровых телефонных сетей и компьютерных данных, в настоящее время широко используются для решения задач по передаче информации в следующих областях: телефония, передача данных, объединение ЛКС, доступ к глобальным компьютерным сетям, интеграция различных видов трафика, передача трафика, чувствительного к задержкам (звук, видео).

Сети и технологии SDH. В сетях стандарта SDH (Synchronous Digital Hierarchy – синхронная цифровая иерархия) реализуется технология синхронных волоконно-оптических сетей. Это высокоскоростные сети цифровой связи, которые строятся на базе оптоволоконных кабельных линий или цифровых радиорелейных линий. Основу инфраструктуры современных высокоскоростных телекоммуникационных сетей (магистральных, региональных или городских) составляют цифровые линии и узлы сети стандарта SDH.

При построении сетей SDH используются следующие модули [39]:

· мультиплексоры SDH – это основные функциональные модули сетей SDH, предназначенные для сборки высокоскоростного потока информации из низкоскоростных потоков и разборки высокоскоростного потока на низкоскоростные;

· коммутаторы – обеспечивают связь каналов, закрепленных за пользователями, путем полупостоянного перекрестного соединения между ними;

· концентраторы – служат для объединения однотипных потоков нескольких удаленных узлов сети в одном распределенном узле;

· регенераторы – это устройства мультиплексирования с одним оптическим каналом доступа и одним-двумя выходами, используемыми для увеличения расстояния между узлами сети SDH.

Сети и технологии SDH отличаются высоким уровнем стандартизации (что позволяет в одной сети использовать оборудование разных фирм-производителей), высокой надежностью (централизованное управление сетью обеспечивает полный мониторинг состояния узлов), наличием полного программного контроля (отслеживание и регистрация аварийных ситуаций, управление конфигурацией сети осуществляется программными средствами с единой консоли управления), возможностью оперативного предоставления услуг по требованию, сравнительно простой схемой развития сети. Благодаря этим преимуществам технология SDH стала основной при построении цифровых транспортных сетей самого различного масштаба.

Топология всей SDH-сети формируется из отдельных базовых топологий типа «кольцо», «линейная цепь», «звезда», «точка-точка», которые используются в качестве сегментов сети. Чаще применяется радиально-кольцевая архитектура SDH-сети, построенная на базе кольцевой и линейной топологий.

В России наибольшую активность в использовании SDH-технологии проявляет АО «Ростелеком». Это АО ежегодно строит 5-6 тыс. км магистральных цифровых линий на основе волоконно-оптических кабелей (ВОЛС) и цифровых радиорелейных линий [30]. Компанией RASCOM построена в 1994 г. и эксплуатируется высокоскоростная цифровая оптоволоконная магистральная линия стандарта SDH между Москвой и Санкт-Петербургом протяженностью 690 км.

 

 




Поделиться с друзьями:


Дата добавления: 2014-12-29; Просмотров: 1709; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.011 сек.