Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Гелиоцентрическая система мира




Коперниканская революция

 

 

В эпоху раннего средневековья в Европе безраздельно господствовалa библейская картина мира. Затем она сменилась догматизирован­ным аристотелизмом и геоцентрической системой Птолемея. Посте­пенно накапливавшиеся данные астрономических наблюдений под­качивали основы этой картины мира. Несовершенство, сложность и запутанность птолемеевской системы становились очевидными. Многочисленные попытки увеличения точности системы Птолемея лишь усложняли ее. (Общее число вспомогательных кругов возросло почти до 80.) Еще в XIII в. кастильский король Альфонсо Х высказался в том смысле, что если бы он мог давать Богу советы, то посоветовал бы при создании мира устроить его проще.

Птолемеевская система не только не позволяла давать точные предсказания; она также страдала явной несистематичностью, отсут­ствием внутреннего единства и целостности; каждая планета рассмат­ривалась сама по себе, имела отдельную от остальных эпициклическую систему, собственные законы движения. В геоцентрических сис­темах движение планет представлялось с помощью нескольких рав­ноправных независимых математических моделей. Для объяснения петель движения данной планеты предполагалось помимо движения по деференту движение по своей группе эпициклов, никак не связан­ных, вообще говоря, с эпициклами и деферентами других планет. Строго говоря, геоцентрическая теория не обосновала геоцентрической системы, так как объектом этой теории система планет (или планетная система) не являлась; в ней речь шла об отдельных движе­ниях небесных тел, не связанных в некоторое системное целое. Гео­центрические теории позволяли предвычислять лишь направления нa небесные светила, но не определить истинную удаленность и рас­положение их в пространстве. Птолемей считал эти задачи вообще неразрешимыми. Установка на поиск внутреннего единства и систем­ности была той основой, вокруг которой концентрировались предпо­сылки создания гелиоцентрической системы.

Создание гелиоцентрической теории было связано и с необходи­мостью реформы юлианского календаря, в котором две основные точки — равноденствие и полнолуние — потеряли связь с реальными астрономическими событиями. Календарная дата весеннего равно­денствия, приходившаяся в IV в. н.э. на 21 марта и закрепленная за этим числом Никейским собором в 325 г. как важная отправная дата при расчете основного христианского праздника Пасхи, к XVI в. отставала от действительной даты равноденствия на 10 дней. Еще с VIII в. юлианский календарь пытались совершенствовать, но безус­пешно. Латеранский собор, проходивший в 1512—1517 гг. в Риме, отметил чрезвычайную остроту проблемы календаря и предложил ее решить ряду известных астрономов, среди которых был и Н. Копер­ник. Но он ответил отказом, так как считал недостаточно развитой и точной теорию движения Солнца и Луны, которые и лежат в основе календаря. Однако это предложение стало для Н. Коперника одним из мотивов совершенствования геоцентрической теории.

Другая общественная потребность, стимулировавшая поиски новой теории планет, была связана с мореходной практикой. Новые, более точные таблицы движения небесных тел, прежде всего Луны и Солнца, требовались для вычисления положений Луны для данного места и момента времени. Определяя разницу во времени одного и того же положения Луны на небе — по таблицам и по часам, установ­ленным по Солнцу во время плавания, вычисляли долготу места на море. Долгое время это был единственный способ нахождения долго­ты во время длительных морских плаваний.

Совершенствование теории планетной системы стимулирова­лось также и нуждами все еще популярной тогда астрологии.

Существенно упростивший астрономические вычисления с помо­щью тригонометрии немецкий астроном и математик Региомонтан (его «Эфемериды» вышли в свет в 1474 г.) выдвинул идею о том, что в птолемеевской теории можно освободиться от эпициклов и дефе­рентов, если заменить описания пяти планет (исключая Землю), вращающихся вблизи Солнца по эпициклам и деферентам, эквивалентной системой планет, вращающихся вокруг Солнца по эксцентричес­ким окружностям. Это был прямой путь к созданию геогелиоцентри­ческой системы, от которой оставался лишь один шаг до «чистого» гелиоцентризма. К другим предпосылкам гелиоцентризма следует отнести, по мнению известного историка науки Т. Куна, «достиже­ния в химическом анализе «падающих камней», имевшие место в средневековье, возрождение в эпоху Ренессанса древнемистической неоплатонистской философии, которая учила, что Солнце — это образ бога, и атлантические путешествия, которые расширили тер­риториальный горизонт человека эпохи Ренессанса» *.

* Kuhn T. The Copernican Revolution: Planetary Astronomy in the Development of Western Thought. Cambridge, 1957. P. VIII.

Величайшим мыслителем, которому суждено было начать вели­кую революцию в астрономии, повлекшую за собой революцию во всем естествознании, был гениальный польский астроном Николай Коперник. Еще в конце XV в., после знакомства и глубокого изучения «Альмагеста», восхищение математическим гением Птолемея сменилось у Коперника сначала сомнениями в истинности этой теории, а затем и убеждением в существовании глубоких противоречий в гео­центризме. Он начал поиск других фундаментальных астрономичес­ких идей, изучал сохранившиеся сочинения или изложения учений древнегреческих математиков и философов, в том числе и первого гелиоцентриста Аристарха Самосского, и мыслителей, утверждав­ших подвижность Земли *.

* В древности кроме Аристарха Самосского негеоцентрические идеи высказы­вались пифагорейцами Филолаем (считавшим, что все планеты и Солнце враща­ются вокруг некоего «центрального огня»), Экфантом (учение о вращении Земли вокруг своей оси), Гераклидом Понтийским (в его учении Земля находилась в центре мира, вращалась вокруг своей оси, а Меркурий и Венера вращались вокруг Солнца) и др. Кроме того, в эпохи античности и средневековья в различных мистических, эзотерических учениях духовный центр мира (Единое, Благо, Логос, Абсолют и др.) олицетворялся с Солнцем как источником «духовного» света. Такое олицетворение получило название «духовного гелиоцентризма».

 

Коперник первым взглянул на весь тысячелетний опыт развития астрономии глазами человека эпохи Возрождения: смелого, уверенного, творческого, новатора. Предшественники Коперника не имели смелости отказаться от самого геоцентрического принципа и пыта­лись либо совершенствовать мелкие детали птолемеевской системы, либо обращаться к еще более древней схеме гомоцентрических сфер. Коперник сумел разорвать с этой тысячелетней консервативной аст­рономической традицией, преодолеть преклонение перед древними авторитетами. Он был движим идеей внутреннего единства и систем­ности астрономического знания, искал простоту и гармонию в при­роде, ключ к объяснению единой сущности многих, кажущихся раз­личными явлений. Результатом этих поисков и стала гелиоцентри­ческая система мира.

Между 1505—1507 гг. Коперник в «Малом комментарии» изложил принципиальные основы гелиоцентрической астрономии. Теорети­ческая обработка астрономических данных была завершена к 1530 г. Но только в 1543 г. увидело свет одно из величайших творений в истории человеческой мысли — «О вращениях небесных сфер», где изложена математическая теория сложных видимых движений Со­лнца, Луны, пяти планет и сферы звезд с соответствующими матема­тическими таблицами и приложением каталога звезд.

В центре мира Коперник поместил Солнце, вокруг которого дви­жутся планеты, и среди них впервые зачисленная в ранг «подвижных звезд» Земля со своим спутником Луной. На огромном расстоянии от планетной системы находится сфера звезд. Его вывод о чудовищной удаленности этой сферы диктовался гелиоцентрическим принци­пом; только так мог Коперник согласовать его с видимым отсутствием у звезд смещений за счет движения самого наблюдателя вместе с Землей (т.е. отсутствием у них параллаксов).

Система Коперника была проще и точнее системы Птолемея, и ее сразу же использовали в практических целях. На ее основе составили «Прусские таблицы», уточнили длину тропического года и провели в 1582 г. давно назревшую реформу календаря — был введен новый, или григорианский, стиль*.

* Он был введен 5 октября (которое стало 15-м) 1582 г. по инициативе папы Григория XIII на основе проекта, предложенного Луиджи Лиллио.

 

Меньшая сложность теории Коперника и получавшаяся, но лишь на первых порах, большая точность вычислений положений планет по гелиоцентрическим таблицам были не самыми главными достоинствами его теории. Более того, теория Коперника при расчетах ока­залась не намного проще птолемеевской, а по точности предвычислений положений планет на длительный промежуток времени прак­тически не отличалась от нее. Несколько более высокая точность, дававшаяся на первых порах «Прусскими таблицами», объяснялась не только введением нового гелиоцентрического принципа, а и более развитым математическим аппаратом вычислений *. Но и «Прусские таблицы» также вскоре разошлись с данными наблюде­ний. Это даже охладило первоначальное восторженное отношение к теории Коперника у тех, кто ожидал от нее немедленного практичес­кого эффекта. Кроме того, с момента своего возникновения и до открытия Галилеем в 1616 г. фаз Венеры, т.е. более полувека, вообще отсутствовали прямые наблюдательные подтверждения движения планет вокруг Солнца, которые свидетельствовали бы об истинности гелиоцентрической системы. В чем же действительное достоинство, привлекательность и истинная сила теории Коперника? Почему она вызвала революционное преобразование всего естествознания?

* См.: Клайн М. Математика. Поиск истины. М., 1988. С. 84.

 

Любое новое всегда возникает на базе и в системе старого. Копер­ник в этом отношении не был исключением. Он разделял многие представления старой, аристотелевской космологии. Так, он представлял Вселенную замкнутым пространством, ограниченным сфе­рой неподвижных звезд. Он не отступал от аристотелевской догмы, в соответствии с которой истинные движения небесных тел могут быть только равномерными и круговыми. В этом он был даже больший консерватор и приверженец аристотелизма, чем Птолемей, ко­торый ввел понятие экванта и допускал неравномерное движение центра эпицикла по деференту. Стремление восстановить аристоте­левские принципы движения небесных тел, нарушавшиеся в ходе развития геоцентрической системы, кстати сказать, и стало для Коперника одним из мотивов поисков иных, негеоцентрических похо­дов к описанию движений планет.

Но, в отличие от своих предшественников, Коперник пытался создать логически простую и стройную планетную теорию. В отсут­ствие простоты, стройности, системности Коперник увидел корен­ную несостоятельность теории Птолемея, в которой не было единого стержневого принципа, объясняющего системные закономерности в движениях планет. Н. Коперник писал:

«...Я ничем иным не был приведен к мысли придумать иной способ вычисления движений небесных тел, как только тем обстоятельством, что относительно исследований этих движений математики не согласны между собой. Начать с того, что движения Солнца и Луны столь мало им известны, что они не в состоянии даже доказать и определить продолжительность года. Затем, при определении движений не только этиx, но и других пяти блуждающих светил, они не употребляют ни одних и тех же одинаковых начал, ни одних и тех же предположений, ни известных доказательств... Даже главного — вида мироздания и известную симметрию между частями его — они не в состоянии вывести на основании этой теории» *.

* Коперник Н. О вращении небесных сфер. М., 1964. С. 12.

 

Коперник был уверен, что представление движений небесных тел как единой системы позволит определить реальные физические ха­рактеристики небесных тел, т.е. то, о чем в геоцентрической модели вовсе не было и речи. Поэтому свою теорию он рассматривал как теорию реального устройства Вселенной.

Возможность перехода к гелиоцентризму (подвижности Земли, обращающейся вокруг реального тела — неподвижного Солнца, рас­положенного в центре мира) Коперник совершенно справедливо усмотрел в представлении об относительном характере движения, известном еще древним грекам, но забытом в средние века. Неравно­мерное петлеобразное движение планет, неравномерное движение Солнца Коперник, как и Птолемей, считал кажущимся эффектом. Но он представил этот эффект не как результат подбора и комбинации движений по условным вспомогательным окружностям, а как результат перемещения самого наблюдателя. Иначе говоря, этот, эффект объяснялся тем, что наблюдение ведется с движущейся Земли. Допу­щение подвижности Земли было главным новым принципом в систе­ме Коперника.

Обоснование введения принципа гелиоцентризма Коперник ус­матривал в особой роли Солнца, отразившейся уже в птолемеевской схеме. В этой схеме планеты по свойствам их движений как бы разде­лялись Солнцем на две группы — нижние (ближе к Земле, чем Солнце) и верхние. Среди тех кругов, которые применялись для описания ви­димого движения планет, обязательно был один круг с годичным, как у Солнца, периодом движения по нему. Для верхних планет — это был первый, или главный эпицикл, для нижних — деферент. Кроме того, Меркурий и Венера (нижние планеты) вообще все время сопровожда­ли Солнце, совершая около него лишь колебательные движения.

Революционное значение гелиоцентрического принципа состоя­ло в том, что он представил движения всех планет как единую систе­му, объяснил многие ранее непонятные эффекты. Так, с помощью представления о годичном и суточном движениях Земли теория Ко­перника сразу же объяснила все главные особенности запутанных видимых движений планет (попятные движения, стояния, петли) и раскрыла причину суточного движения небосвода. Петлеобразные движения планет теперь объяснялись годичным движением Земли вокруг Солнца. В различии же размеров петель (и, следовательно, радиусов соответствующих эпициклов) Коперник правильно увидел отображение орбитального движения Земли: наблюдаемая с Земли планета должна описывать видимую петлю тем меньшую, чем дальше она от Земли. В системе Коперника впервые получила объяснение загадочная прежде последовательность размеров первых эпициклов у верхних планет, введенных Птолемеем. Размеры их оказались убы­вающими с удалением планеты от Земли. Движение по этим эпицик­лам, равно как и движение по деферентам для нижних планет, совер­шалось с одним периодом, равным периоду обращения Солнца во­круг Земли. Все эти годичные круги геоцентрической системы оказались излишними в системе Коперника.

Впервые получила объяснение смена времен года: Земля движет­ся вокруг Солнца, сохраняя неизменным в пространстве положение оси своего суточного вращения.

Более того, это глубокое объяснение видимых явлений позволило Копернику впервые в истории астрономии поставить вопрос об оп­ределении действительных расстояний планет от Солнца. Коперник понял, что этими расстояниями планет были величины, обратные радиусам первых эпициклов для внешних планет и совпадающие с радиусами деферентов — для внутренних *. Таким образом он получает весьма точные относительные расстояния планет от Солнца (в а.е.), (в скобках — современные данные):

Меркурий 0,375 (0,387) Марс 1.52 (1,52)

Венера 0,720 (0,723) Юпитер 5,21 (5,20)

Земля 1,000 (1,000) Сатурн 9,18 (9,54)

* Объявляя задачу определения расстояний до тел Солнечной системы нераз­решимой, Птолемей не догадывался, что на самом деле решение этой задачи уже содержалось в скрытом виде в его системе.

 

Теория Коперника логически стройная, четкая и простая. Она способна рационально объяснить то, что раньше либо не объясня­лось вовсе, либо объяснялось искусственно, связать в единое то, что ранее считалось совершенно различными явлениями. Это — ее несо­мненные достоинства; они свидетельствовали о истинности гелио­центризма. Наиболее проницательные мыслители поняли это сразу. И уже не столь важным было то, что Коперник отдал дань анти­чным и средневековым традициям: он принял круговые равномерные движения небесных тел, центральное положение Солнца во Bсeленной, конечность Вселенной, ограничивал мир единственной планетной системой. Допуская лишь круговые равномерные движения пo окружностям, Коперник отверг эквант — быть может, наиболее остроумную находку Птолемея. Этим он сделал даже некоторый принципиальный шаг назад. Коперник сохранил и эпициклы, и деференты. Принцип круговых равномерных движений вынудил его для достаточно точного описания движения планет сохранить свыше «трех десятков эпициклов (правда, всего 34 вместо почти 80 в геоцент­рической системе).

И тем не менее теория Коперника содержала в себе колоссальный творческий, мировоззренческий и теоретико-методологический потенциал. Ее историческое значение трудно переоценить.

· Она подорвала ядро (геоцентрическую систему) религиозно-феодального мировоззрения, основания старой (первой) научной картины мира.

· Она стала базой революционного становления нового научно­го мировоззрения, новой (второй) механистической картины мира.

· Она явилась одной из важнейших предпосылок революции в физике (так называемой ньютонианской революции) и созда­ния первой естественно-научной фундаментальной теории — классической механики.

· Она определила разработку новой, научной методологии по­знания природы. Схоластическая традиция исходила из того, что для познания сущности объекта нет необходимости деталь­но изучать внешнюю сторону объекта, сущность может непосредственно постигаться разумом. Коперник же впервые в истории познания на деле показал, что сущность может быть понята только после тщательного изучения явления, его зако­номерностей и противоречий; познание сущности всегда опос­редовано познанием явления, которое по своему содержанию может быть совершенно противоположным сущности.

 

5.3.2. Дж. Бруно: мировоззренческие выводы из коперниканизма

 

В течение нескольких десятилетий после выхода в свет труда «Об обращении небесных сфер» коперниканские идеи не привлекали особого внимания широкой научной общественности. Это было свя­зано с бурными политическими событиями того времени: религиоз­ные войны, Реформация, обострение борьбы католицизма и протес­тантизма, становление национальных государств, отодвинули на вто­рой план проблемы мироздания, космологии и астрономии. Задача сравнения птолемеевской и коперниканской теорий актуализирова­лась лишь в 70-е гг. XVI в., когда два знаменитых астрономических события (вспышка сверхновой в 1572 г. и яркая комета 1577 г.) в очередной раз поставили под сомнение основы аристотелевской кос­мологии. Мировоззренческие и теоретические выводы из гелиоцент­ризма, его развитие и совершенствование — заслуга ученых следую­щего поколения: Т. Браге, Дж. Бруно, И. Кеплер, Г. Галилей, Дж. Борелли и др.

Прежде всего не замедлили проявиться мировоззренческие выво­ды из коперниканизма. Признав подвижность, планетарность, не­уникальность Земли, теория Коперника тем самым устраняла веко­вое представление об уникальности центра вращения во Вселенной. Центром вращения стало Солнце, но оно не было уникальным телом. О его тождественности звездам догадывались еще в античное время. Следующий шаг в мировоззренческих выводах был вполне закономе­рен. Он был сделан бывшим монахом одного из неаполитанских мо­настырей Джордано Бруно, личности исключительно яркой, смелой, способной на бескомпромиссное стремление к истине. Познакомив­шись в 60-е гг. XVI в. с гелиоцентрической теорией Коперника, Бруно поначалу отнесся к ней с недоверием. Чтобы выработать свое собст­венное отношение к проблеме устройства Космоса, он обратился к изучению системы Птолемея и материалистических учений древне­греческих мыслителей, в первую очередь атомистов, о бесконечнос­ти Вселенной. Большую роль в формировании взглядов Бруно сыгра­ло его знакомство с идеями Николая Кузанского, который утверждал, что ни одно тело не может быть центром Вселенной в силу ее беско­нечности. Объединив гелиоцентризм Н. Коперника с идеями Н. Ку­занского об изотропности, однородности и безграничности Вселенной, Бруно пришел к концепции множественности планетных сис­тем в бесконечной Вселенной.

Бруно отвергал замкнутую сферу звезд, центральное положение Солнца во Вселенной и провозглашал тождество Солнца и звезд, множественность «солнечных систем» в бесконечной Вселенной, множественную населенность Вселенной. Указывая на колоссальные различия расстояний до разных звезд, он сделал вывод, что поэтому соотношение их видимого блеска может быть обманчивым. Он раз­делял небесные тела на самосветящиеся — звезды, солнца, и на тем­ные, которые лишь отражают солнечный свет. Бруно утверждал, во-первых, изменяемость всех небесных тел, полагая, что существует непрерывный обмен между ними и космическим веществом, во-вторых, общность элементов, составляющих Землю и все другие небесные тела, и считал, что в основе всех вещей лежит неизменная, неисчезающая первичная материальная субстанция.

Именно Бруно принадлежит первый и достаточно четкий эскиз современной картины вечной, никем не сотворенной, вещественной единой бесконечной развивающейся Вселенной с бесконечным числом очагов Разума в ней. В свете учения Бруно теория Коперника снижает свой ранг: она оказывается не теорией Вселенной, а теорией лишь одной из множества планетных систем Вселенной и, возможно, не самой выдающейся такой системы.

Новое, ошеломляюще смелое учение Бруно, открыто провозгла­шавшееся им в бурных диспутах с представителями церковных кругов, определило дальнейшую трагическую судьбу ученого. К тому же дерзость его научных выступлений была предлогом, чтобы распра­виться с ним и за его откровенную критику непомерного обогащения монастырей и церкви. Великий мыслитель был сожжен на площади Цветов в Риме 17 февраля 1600 г. А спустя почти три столетия на месте казни Бруно, где некогда был зажжен костер, был воздвигнут памятник с посвящением, начинающимся словами: «От столетия, которое он предвидел...»

К середине XVII в. гелиоцентрическая теория окончательно победила геоцентризм. Коперниканизм был признан научной общественностью и стал рассматриваться как теория действительного строения Вселенной. На повестке дня оказалась проблема физического обоснования гелиоцентризма, и в середине XVII в. астрономическая революция закономерно перерастает в физическую революцию.

 

6. НАУЧНАЯ РЕВОЛЮЦИЯ XVII в.: ВОЗНИКНОВЕНИЕ КЛАССИЧЕСКОЙ МЕХАНИКИ

 

Капитализм качественно преобразовывал как характер деятельности, так и тип обще­ния людей. Изменения характера деятельности состояли в появлении принципиаль­ной отчужденности в капиталистическом производстве субъективного мотива дея­тельности и ее объективного результата. В этих условиях складывается полное господ­ство абстрактного труда, товарно-денежных отношений, общественные отношения превалируют над межличностными, происходит «овеществление» личных связей и отношений, всех видов деятельности, их обезличивание. Кардинально изменяется и тип общения. Индивид вырывается из системы корпоративно-сословной принадлеж­ности и непосредственно включается в функционирование общественных связей, прежде всего экономических. На смену индивидуальной ценности личности произво­дителя приходит ценность произведенных им вещей; посредником отношений между людьми становятся товары, формируется «товарный фетишизм», отношения личной зависимости сменяются зависимостью субъекта от продуктов собственной деятель­ности.

Создание единого мирового рынка, универсальных общественных связей - дости­жения буржуазной эпохи. Только при капитализме история становится всемирной, складываются предпосылки универсализации личности, ее индивидуальный опыт обо­гащается социально-историческим опытом не только своей страны, региона, но и всего человечества; человек включается в ансамбль универсальных социальных отно­шений, становится носителем всемирно-исторического опыта. Высвобождая человека из системы личностной зависимости, атомизируя личность, капитализм делает эти прогрессивные шаги за счет доведения до крайности отчуждения личности от обще­ства: на смену единству коллектива и индивида приходит их противопоставление, отчуждение человека от человека, а значит, и общества от природы. В этих условиях складывается такой тип сознания, в котором на первый план выдвигается потребность в накоплении не столько релятивизированных ценностей, сколько объективного зна­ния о мире.

Получение объективного знания о мире - задача мышления, разума. Не случайно, что именно в это время формируются идеалы рационализма, провозглашается господ­ство «века Разума» и соответственно изменяются (по сравнению с античностью и средневековьем) представления о целях, задачах, методах естественно-научного по­знания. Формируется убеждение, что предметом естественно-научного познания являются природные явления, полностью подчиняющиеся механическим закономерностям. Природа при этом предстает как своеобразная громадная машина, взаимодействие между частями которой осуществляется на основе причинно-следственных связей. Задачей естество­знания становится определение лишь количественно измеримых параметров природных явлений и установление между ними функциональных зависимостей, которые могут (и должны быть) выражены строгим математическим языком. В этих условиях механика выходит на первое место среди естественных наук.

 

6.1. И. Кеплер: от поисков гармонии мира к открытию тайны планетных орбит

 

После работ Коперника дальнейшее развитие астрономии требовало значительного расширения и уточнения эмпирического материала, наблюдательных данных о небесных телах. Европейские астрономы продолжали пользоваться старыми античными результатами наблю­дений. Но они устарели и часто были неточны. Проводимые же в ту пopy европейскими астрономами наблюдения характеризовались большими погрешностями.

Кардинальные изменения наметились только в последней четверти XVI в., когда в 1580 г. в Дании на островке Вен (в 20 км от Копен­гагена) построили невиданную еще астрономическую обсерваторию, названную Небесным замком (Ураниборгом). Инициатором и орга­низатором строительства обсерватории и новых огромных инстру­ментов для астрономических наблюдений (квадранта радиусом 2 м, точность которого доходила до 1/6', сектанта для измерения угловых расстояний между звездами, большого небесного глобуса и др.) был Тихо Браге, датский дворянин, посвятивший свою жизнь не воин­ским подвигам, а служению богине Неба — Урании.

Первое выдающееся открытие Тихо Браге сделал еще в 1572 г., когда, наблюдая за вспыхнувшей яркой звездой в созвездии Кассиопеи, показал, что это вовсе не атмосферное явление (как это следова­ло из аристотелевой картины мира), а удивительное изменение в Сфере звезд *. Более двух десятков лет провел Браге в Ураниборге, определяя положение небесных объектов. Удивляет точность его данных, если помнить, что тогда еще не знали телескопов и других оптических инструментов. Так, при сравнении с современными дан­ными оказалось, что средние ошибки при определении положений звезд у него не превышали 1, а для 21 опорной звезды — даже 40".

* Это была вспышка сверхновой звезды.

 

Тихо Браге был блестящим астрономом-наблюдателем, но не тео­ретиком. Это мешало ему в полной мере оценить учение Коперника. Однако Браге тоже ощущал недостатки птолемеевской геоцентрической системы и разработал систему, занимавшую промежуточное место между геоцентрической и гелиоцентрической. В этой системе Солнце движется по эксцентрической окружности вокруг неподвиж­ной Земли, а планеты обращаются вокруг Солнца.

К счастью, на своем жизненном пути Т. Браге встретил Иоганна Кеплера. На смертном одре Тихо Браге завещал Кеплеру все свои рукописи, содержавшие результаты многолетних астрономических наблюдений, с тем чтобы Кеплер доказал справедливость его, Браге, гипотезы о строении планетной системы. Это завещание не было и не могло быть исполнено. Но Кеплер сделал несравненно более вели­кое открытие — он раскрыл главную тайну планетных орбит. Этот великий немецкий ученый (с удивительной судьбой, жизнь которого была полна невзгод и лишений) совершил величайший научный под­виг — заложил фундамент новой теоретической астрономии и учения о гравитации. Он показал, что законы надо искать в природе, а не выдумывать их как искусственные схемы и подгонять под них явле­ния природы.

Будучи глубоко религиозным человеком и увлекаясь в молодости астрологией, Кеплер поставил перед собой великую жизненную цель — проникнуть в божественные планы творения мира, постичь тайны строения Вселенной. Считая, что Бог как высшее творческое начало при сотворении мира должен был руководствоваться идеаль­ными, математически совершенными числовыми отношениями и геометрическими формами, Кеплер пытался объяснить существова­ние только шести планет Солнечной системы существованием всего пяти правильных многогранников *. Кеплер пытается математически связать орбиты планет со сферами, вписанными в многогранники и описанными вокруг них. Затем закономерно возникает и вопрос об отношениях радиусов орбит планет между собой, решение которого, в свою очередь, подводит Кеплера к поиску точных законов гелиоцентрического планетного мира и превращает эту задачу в главное дело жизни.

* Во времена Кеплера было известно только шесть планет Солнечной системы, наблюдаемых невооруженным глазом: Меркурий, Венера, Земля, Марс, Юпитер и Сатурн. Планета Уран была открыта В. Гершелем в 1781 г., Нептун открыт астро­номом Галле и математиком Леверье в 1846., Плутон был обнаружен только в 1930г.

 

В ходе длительной напряженной, колоссальной исследователь­ской работы проявились его гениальность как астронома и математи­ка, смелость мысли, свобода духа, благодаря которым он сумел пре­одолеть тысячелетние традиции и предрассудки. Многолетние поис­ки числовой гармонии Вселенной, простых числовых отношений в мире завершились открытием действительных законов планетных движений, которые Кеплер изложил в сочинениях «Новая, изыскивающая причины астрономия, или Физика неба» (1609) и «Гармония мира» (1619).

В начале XVII в. основные космологические идеи древних греков уже утратили свое научное значение, но тем не менее некоторые из них за столетия приобрели характер абсолютных истин, отказаться от которых не хватало смелости духа. К ним, в частности, относилось представление о том, что только круговое, равномерное, «естествен­ное» движение единственно допустимо для небесных тел. Даже Коперник и Галилей остались во власти этого убеждения, считая древ­ний космологический принцип незыблемым. Против этой научной догмы и выступил Кеплер. После пяти лет трудоемкой математичес­кой обработки огромного материала наблюдений Т. Браге за движе­нием Марса Кеплер в 1605 г. открыл и в 1609 г. опубликовал первые два закона планетных движений (сначала для Марса, затем распространил их на другие планеты и их спутники).

Первый утверждал эллиптическую форму орбит и тем разрушал принцип круговых движений в космосе; второй показывал, что планеты нe только движутся по эллиптическим орбитам, но и движутся по ним неравномерно. Скорость планет изменяется таким образом, что площади, описываемые радиусом-вектором в равные промежутки времени, равны между собой (закон постоянства площадей). Так рухнул и принцип равномерности небесных движений. Кеплер ввел пять параметров, определяющих гелиоцентрическую орбиту планеты (Кеплеровы эле­менты) и нашел уравнение для вычисления положения планеты на орбите в любой заданный момент времени (уравнение Кеплера). Таким образом, открытые им законы стали рабочим инструментом для наблюдателей.

Далее Кеплер поставил вопрос о динамике движения планет. До Кеплера планетная космология, опиравшаяся на аристотелевский принцип «естественности» движений небесных тел, была кинемати­ческой. Авторы планетных теорий ограничивались разработкой кинематико-геометрических моделей мира, не пытаясь определить причины, вызывавшие движения небесных тел. Даже у Коперника схема орбитальных движений планет оставалась старой, кинемати­ческой. И только Кеплер увидел в гелиоцентрической картине дви­жений планет действие единой физической силы и поставил вопрос о ее природе.

Уже в 1596 г. в своем первом сочинении «Космографическая тайна» он обратил внимание на то, что с удалением от Солнца перио­ды обращения планет увеличиваются быстрее, чем радиусы их орбит, т.е. уменьшается скорость движения планет. Здесь возможны два объяснения: первое — движущая сила сосредоточена в каждой плане­те, и у далеких планет она почему-то меньше, чем у близких (так думал Т. Браге); второе — движущая сила едина для всей системы и сосредоточена в ее центре — Солнце, которое действует сильнее на близкие и слабее на далекие планеты. Кеплер остановился на втором, посколь­ку эта идея лучше объясняла первые два закона планетных движений. Через десять лет после опубликования первых двух законов Кеплер установил (1619) универсальную зависимость между периодами обра­щения планет и средними расстояниями их от Солнца: третий закон Кеплера — квадраты времен обращения планет вокруг Солнца относятся как кубы, средних расстояний этих планет от Солнца. Это окончательно убедило его в том, что движением планет управляет именно Солнце.

Поэтому Кеплер впервые поставил вопрос о физической природе и точном математическом законе действия силы, движущей планеты. Действие Солнца на планеты Кеплер сравнивал с действием магнита. Такое сравнение было вполне в духе времени, для которого характер­но особое увлечение магнитными явлениями. В 1600 г. английский врач и физик У. Гильберт, справедливо считая Землю большим маг­нитом, выдвинул идею универсальности магнетизма и сводил к нему силу тяжести. Магнитным влиянием Луны пытались объяснить мор­ские приливы и отливы. Опираясь на эти идеи, Кеплер в 1609 г. развил представление о механизме действия силы, движущей плане­ты, как о вихре, возникающем в эфирной среде от вращения магнит­ного Солнца. Кеплер полагал, что сила действовала на планету непо­средственно вдоль орбиты. Недостаточное развитие основ механики привело его к ошибочному выводу, что эта сила обратно пропорцио­нальна расстоянию (а не его квадрату) от Солнца. Эксцентричность орбит он объяснял тем, что планеты — это большие круглые магниты с постоянным направлением магнитной оси, которые в зависимости от расположения магнитных полюсов то притягиваются, то отталки­ваются от Солнца.

Для установления истинного сложного характера причин орби­тального движения планеты требовались уточнение основных физи­ческих понятий и создание основ механики. Это было делом будуще­го. Таким образом, в исследованиях механики неба Кеплер до преде­ла исчерпал возможности современной ему физики.

 




Поделиться с друзьями:


Дата добавления: 2014-12-29; Просмотров: 981; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.053 сек.