Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Основные факторы риска генно-инженерной деятельности для здоровья человека и окружающей среды




Использование достижений современной биотехнологии позволило прийти к выводу, что, с одной стороны, они содействуют решению мировых проблем благосостояния людей. С другой стороны, генетическая инженерия – действительно революционная технология, которая открывает немыслимые ранее возможности направленной модификации генетического материала. В связи с этим у людей невольно возникает вопрос: а насколько безопасны организмы, созданные с помощью этой технологии для здоровья человека и окружающей среды?

Принимая во внимание этот второй аспект, при использовании достижений современной биотехнологии определяющим стал принцип принятия мер предосторожности. Источники появления и применения этого принципа проистекают из экологического общественного движения 70-х годов прошлого века, когда он был сформулирован как реакция на скептицизм относительно возможности научной оценки риска и предотвращения вредных последствий применения сложных технологий. По сути, принцип определяет, что перед лицом научной неопределенности или отсутствия необходимых знаний лучше ошибиться в сторону избыточности мер безопасности по отношению к здоровью человека и окружающей среде, чем ошибиться в оценке риска. В настоящее время этот принцип содержат более 20 международных законов, договоров, протоколов и конвенций, в том числе Картахенский протокол по биобезопасности к Конвенции о биологическом разнообразии. Приведенные в них формулировки принципа принятия мер предосторожности не требуют доказательства абсолютной безопасности технологии, но скорее предполагают ее ограничение в случае, если уровень научной неопределенности относительно потенциального риска является значительным, а возможности управления риском — недостаточными. При наличии обоснованных научных предположений о том, что новый процесс или продукт может быть опасным, он не должен внедряться до тех пор, пока не будут получены доказательства того, что риск невелик, управляем и преимущества технологии его «перевешивают». Применение принципа предосторожности в этом смысле должно продемонстрировать, не абсолютным образом, но выше уровня обоснованных сомнений, что предлагаемая заявителем генно-инженерная деятельность является безопасной.

Для решения этой задачи создана международная структура и структуры биобезопасности отдельных государств, которые включают:

- законодательную базу, регулирующую генно-инженерную деятельность;

- административную систему, которая исполняет и контролирует законный порядок осуществления генно-инженерной деятельности;

- систему обоснованного принятия решений, которая предполагает оценку и предупреждение соответствующего риска генно-инженерной деятельности;

- механизм информирования и участия общественности в принятии решений о разрешении генно-инженерной деятельности и контроле над их исполнением.

Факторы риска генно-инженерной деятельности – это возможные прямые и непрямые неблагоприятные воздействия генно-инженерных организмов или продуктов, изготовленных из них (включающих их), на здоровье человека и/или окружающую среду, обусловленные эффектом вставки рекомбинантной ДНК, функционирования трансгенов и их передачей от генно-инженерных организмов другим организмам. В итоге оценки риска должны быть получены ответы на следующие вопросы: является ли потенциальный риск генно-инженерной деятельности приемлемым по сравнению с выгодами, получаемыми в результате ее осуществления; есть ли регуляторные механизмы, адекватные для безопасного осуществления генно-инженерной деятельности.

Различают факторы риска генно-инженерной деятельности для здоровья человека и животных в замкнутых системах и в хозяйственной деятельности, связанной с высвобождением генно-инженерных организмов в окружающую среду (высвобождение патогенных генно-инженерных организмов в окружающую среду не предусматривается). К числу потенциально опасных эффектов при работе с ГМО в замкнутых системах относят:

- токсичные и/или аллергенные эффекты генно-инженерных организмов или продуктов их метаболизма;

- вероятные вредные воздействия целевых продуктов генно-инженерной деятельности;

- сравнительная патогенность генно-инженерных микроорганизмов по сравнению с донором, реципиентом;

- способность к микробному обсеменению;

- факторы патогенности генно-инженерного организма (тип вызываемого заболевания; механизм патогенности, включающий способ проникновения патогенного организма и вирулентность; инфекционная доза и т.д.).

Для оценки риска генно-инженерной деятельности исходят из того, что патогенные для человека и животных организмы не должны высвобождаться в окружающую среду ни при каких обстоятельствах. Обязательными условиями оценки риска являются:

- работа с патогенными организмами должна проходить в замкнутых системах;

- соблюдение специальных защитных мер (физических, химических, биологических);

- охрана здоровья и безопасности следующих категорий людей: предполагаемых пользователей продуктов генно-инженерной деятельности; персонала лабораторий или предприятий, которые занимаются генно-инженерной деятельностью; потенциально контактирующих; населения региона в случае случайного высвобождения генно-инженерных организмов.

Базой для процедуры оценки риска патогенности в рамках генно-инженерной деятельности является Директива Европейского Союза 90/219/ЕЕС от 23 апреля 1990 года.

Факторы риска генно-инженерной деятельности для здоровья человека в хозяйственной деятельности связаны, прежде всего, с потреблением продуктов, полученных из ГМО или произведенных ими. К числу потенциальных рисков для здоровья человека относят:

- синтез новых белков – продуктов трансгенов, которые могут быть токсичными и/или аллергенными;

- изменение активности отдельных генов ГМО, в результате чего может произойти ухудшение потребительских свойств продуктов питания, получаемых из них;

- горизонтальная передача трансгенов устойчивости к антибиотикам микроорганизмам пищеварительного тракта.

Оценка безопасности генетически модифицированных продуктов питания основывается на принципе «существенной эквивалентности», разработанном Организацией экономического сотрудничества и развития. Его суть заключается в том, что оценивается не уровень безопасности новых продуктов питания, а его изменение в сравнении с традиционными пищевыми аналогами с длительной историей безопасного использования. Так, например, оценка потенциальной токсичности новых продуктов питания заключается в следующем. Если исследуемое вещество – известный компонент растительной пищи с длительной историей безопасного использования, то исследования токсичности необязательны. В других случаях придерживаются такого плана:

1. Определение концентрации потенциальных токсинов в съедобных частях растений;

2. Установление удельного веса данного продукта в пищевом рационе определенных групп населения;

3. Сравнение (для белков) их аминокислотной последовательности с таковой у известных токсинов и пищевых антагонистов по электронным базам данных;

4. Оценка стабильности новых веществ к термической обработке;

5. Определение скорости разрушения потенциальных токсинов в желудочно-кишечном тракте (в модельных системах);

6. Анализ уровня токсичности новых веществ в модельных системах (культура клеток in vitro);

7. Анализ токсичности в экспериментах по принудительному скармливанию лабораторным или домашним животным пищи, содержащей продукты, полученные из изучаемого генетически модифицированного организма в течение длительного времени (1–2 года) либо в течение короткого времени, но с использованием высоких концентраций изучаемых продуктов (около двух недель).

Кроме рисков для здоровья человека при оценки безопасности ГМО также рассматриваются риски возможных неблагоприятных эффектовна окружающую среду:

1. Разрушительное влияние на биологические сообщества и утрата ценных биологических ресурсов в результате засорения местных видов генами, перенесенными от генетически модифицированных организмов (в результате возможно увеличение численности одних видов и снижение численности других);

2. Создание новых паразитов (сорняков), усиление вредоносности уже существующих на основе самих генно-модифицированных организмов или в результате переноса трансгенов другим видам (появление суперсорняков и супервредителей);

3. Выработка веществ – продуктов трансгенов, которые могут быть токсичными для организмов, живущих или питающихся на генетических модифицированных организмах и не являющихся мишенями трансгенных признаков (например, пчел);

4. Неблагоприятное воздействие на экосистемы токсичных веществ, производных неполного разрушения опасных химикатов, например, гербицидов (первые генно-модифицированные организмы были устойчивы к гербицидам. Появилось опасение, что их использование может привести к отрицательному воздействию на экосистемы. Но практика использования гербицидоустойчивых генетически модифицированных сортов показала обратное).

7.3 Биобезопасность: структура и правовые основы регулирования

Вопросы безопасности генно-инженерной деятельности получили правовое регулирование на международном и национальном уровнях в конце двадцатого века. Основные этапы процесса разработки международных руководящих принципов безопасности в биотехнологии: публикация «Кодекса добровольного поведения при высвобождении организмов в окружающую среду» (1991 г.), Международная конвенция по охране новых сортов растений (1961 г., 1972 г., 1978 г., 1991 г.), которая была ратифицирована Законом Украины в 2002 г., Конференция ООН по окружающей среде и развитию (1992 г.), деятельность Европейской экономической комиссии ООН (1994 г.), Второе совещание Конференции Сторон Конвенции о биологическом разнообразии (1995 г.), Орхусская конвенция (1998 г.), к которой присоединилась Украина в 1998 году.

Система правового регулирования безопасности генно-инженерной деятельности в нашей стране создана с учетом международных документов, а также с учетом опыта ведущих стран мира в области генетической инженерии. Сегодня политика Украины в области биобезопасности – часть политики в области здравоохранения и охраны окружающей среды с позиций концепции устойчивого развития. В области безопасного использования биотехнологий сделаны следующие шаги: создание в 1999 году Национального координационного центра биобезопасности, который осуществляет полномасштабный мониторинг за развитием этого направления. В 2002 году Украина присоединилась к Картахенскому протоколу по биобезопасности к Конвенции о биологическом разнообразии. В 2006 году в республике Беларусь, а в Российской Федерации в 2010 году был принят Закон «О безопасности генно-инженерной деятельности». Он не охватывает весь комплекс общественных отношений, его положения не распространяются на отношения, связанные с применением методов генетической инженерии к человеку, его органам и тканям, а также обращением с фармацевтическими препаратами, продовольственным сырьем и пищевыми продуктами, кормами для животных, полученными из генно-инженерных организмов (эти вопросы регулируются специальным законодательством о здравоохранении).

В Законе были прописаны основы правового регулирования четырех групп общественных отношений согласно главным мировым направлениям генно-инженерной деятельности:

- генно-инженерная деятельность в замкнутой системе (научно-исследовательских лабораториях);

- высвобождение генно-инженерных организмов в окружающую среду для оценки и отбора полезных и безопасных для человека улучшенных сортов растений и пород животных на специально обустроенных территориях;

- использование полученных результатов в хозяйственной деятельности;

- перемещение различных генно-инженерных организмов через границу.

Дискуссии по вопросу закона и разработки модели государственного регулирования безопасности генно-инженерной деятельности продолжаются в нашей стране.




Поделиться с друзьями:


Дата добавления: 2014-12-29; Просмотров: 1492; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.017 сек.