Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Кривые второго порядка. Пересечение прямой и плоскости




Пересечение прямой и плоскости

 

Пусть плоскость задана своим общим уравнением: Ax+By+Cz+D=0, а прямая в каноническом виде: . Для решения этой задачи проще всего: прямую представить в параметрическом виде: где

Подставляя выражения для x,y и z в уравнение плоскости: , если:

· данное уравнение имеет единственное решение, то прямая и плоскость пересекаются и для нахождения точки пересечения, необходимо найденное значение параметра t подставить в параметрическое уравнение прямой

· если уравнение решения не имеет, то прямая параллельна плоскости

· если решений множество, т.е. уравнение верно при любом t, то прямая принадлежит плоскости.

 

Алгебраическое уравнение второго порядка на плоскости описывает кривую второго порядка, другими словами, любое уравнение вида определяет либо одну из кривых: эллипс, гипербола, парабола; либо распадается на две прямые, ибо точек, удовлетворяющих данному уравнению на плоскости нет.

Эллипс

Каноническое уравнение эллипса, с центром в начале координат:

Полуосями этого эллипса являются по оси ОХ- отрезок а, и по оси ОУ- отрезок b. Таким образом, эллипс имеет две оси симметрии: ось ОХ и ось ОУ. Четыре вершины: точки с координатами (-а;0); (а;0); (0;-b); (0;b). Если величина а b, то . На большей оси в точках с координатами и (с, 0) находятся фокусы эллипса. Эксцентриситетом эллипса называется ,т.е. отношение половины расстояния между фокусами к большей полуоси. Для эллипса

Характеристическое свойство эллипса: Эллипсом называется геометрическое место точек, сумма расстояний от каждой из которых до двух данных точек той же плоскости, называемых фокусами, постоянна и равна удвоенной большей полуоси.

-каноническое уравнение эллипса,

центр симметрии которого находится в точке Q(,

полуоси эллипса: по ОХ равна a, по оси ОУ равна b.

Фокусы находятся в точках:

Пример: Построить эллипс, каноническое уравнение которого:

,найти его фокусы и эксцентриситет.

Решение: Центром симметрии эллипса является точка Q(2; -3), полуоси эллипса: а=3; b=2; ; фокусы эллипса находятся в точках: .




Поделиться с друзьями:


Дата добавления: 2014-12-29; Просмотров: 557; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.013 сек.