Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Китайцы построили микробный генератор водорода




Найден новый способ расщепления воды

Международная группа исследователей, возглавляемая учеными из австралийского университета Монаш (Monash University), заявила о том, что ей удалось химическими методами воспроизвести ключевой процесс фотосинтеза, и это обеспечило значительное продвижение в разработке технологии использования солнечного света для расщепления воды на водород и кислород.
До сих пор именно отсутствие недорогих способов получения водорода в промышленных масштабах служило одним из основных факторов, препятствующих его использованию в качестве экологически чистого топлива.

В процессе, разработанном исследователями, используются соединения марганца, так же как и в процессе фотосинтеза, происходящем в растениях. Но в живой природе под действием солнечных лучей из воды и двуокиси углерода образуется кислород и углеводы, тогда как ученые модифицировали реакцию, с тем, чтобы использовать свет для расщепления воды на ее составляющие – водород и кислород. В текущей реализации для успешного протекания процесса требуется также приложение небольшого потенциала с напряжением 1,2 В.

Согласно опубликованной исследователями информации, ключевой разработкой, позволившей реализовать реактор, стало покрытие для анода, названное Nafion и представляющее собой разновидность полимерной мембраны толщиной несколько микрометров, в которой находятся включения марганца. Покрытие предохраняет марганец от распада, и одновременно обеспечивает доступ воды к катализатору, где она окисляется под действием солнечного света. Хотя ученые признают, что над технологией еще предстоит немало поработать, чтобы адаптировать ее к условиям промышленного производства, в целом они отмечают жизнеспособность изобретенного процесса, что было продемонстрировано в ходе испытаний реактора, продолжавшего успешно функционировать на третьи сутки тестирования.



Китайские исследователи построили экспериментальный аппарат, в котором колония микроорганизмов вырабатывает водород из ацетатов. При этом, что важно, устройству не требуется никакого внешнего электропитания.
Данная работа интересна тем, что в качестве сырья применяется группа соединений, относительно дешёвых и широко распространённых в химической (и не только) промышленности. Если полномасштабная установка на новом принципе окажется рентабельной, это может открыть альтернативный путь для массовой выработки водорода. К примеру — для использования его в качестве топлива "зелёных" автомобилей, получаемого из недорогого и доступного сырья, химических отходов в том числе.

Новая система отталкивается от двух давно известных учёным типов приборов: микробных топливных элементов (MFC) и микробных электролизных ячеек (MEC). В первых бактерии потребляют какое-либо органическое топливо, выдавая на выходе электрический ток, а во вторых бактерии при содействии внешнего источника напряжения разлагают сложные вещества на простые (водород, к примеру).

Особый интерес вызывает именно способность микроорганизмов выдавать "на-гора" H2. Но тут экспериментаторы сталкиваются с кучей проблем, выливающихся в невысокую производительность установок в расчёте на потраченную извне энергию.

Группа учёных из Китайского университета науки и технологии (University of Science & Technology of China), а также — нескольких других исследовательских центров и институтов Поднебесной изящно обошла эти трудности, замкнув электрическими цепями и трубопроводами друг на друга специально разработанные MFC и MEC.

Водород, Генератор

На схеме нового генератора водорода показаны его основные части: 1 – микробный топливный элемент; 2 – микробная электролизная ячейка. Камеры каждого из двух приборов разделены протонообменной мембраной. Колонии бактерий живут на анодах каждого из блоков.

Красота установки заключается ещё и в том, что одно и то же вещество (ацетат) в MFC работает как топливо, для получения тока, а в MEC — как сырьё для синтеза водорода. При этом MFC полностью обеспечивает потребности MEC в электричестве.

В анодной камере последнего "мини-реактора" бактерии разлагают ацетат при помощи ряда метаболических реакций, выпуская углекислый газ. При этом образуются ионы водорода, которые мигрируют через мембрану. На катоде MEC они объединяются с электронами, пришедшими с анода MFC (на котором идёт аналогичная реакция разложения органики), что и даёт чистый водород.

Протоны же с топливного элемента, пройдя через свою мембрану, соединяются с кислородом воздуха, порождая воду. Так достигается полный баланс по атомам.

Китайские специалисты особо подчёркивают, что напряжение холостого хода микробного топливного элемента на ацетатах составляет 0,8 вольта. В то же время для проведения электролиза ацетата с выработкой водорода нужно обеспечить микроорганизмы напряжением 0,14 вольта (в теории) и 0,6 вольта, если учесть все потери в установке и желаемую высокую производительность.

Как видим, баланс соблюдается и тут.

Авторы проекта утверждают, что впервые MFC и MEC были объединены в одну установку, которая на практике показала способность генерировать водород на месте. При этом эффективность опытного прибора китайцы оценили высоко.

Тем не менее они намерены ещё поработать над параметрами электродов и мембран, чтобы дальше повысить отдачу прибора.

А описание нынешнего варианта генератора водорода исследователи поместили в журнале Environmental Science & Technology.




Поделиться с друзьями:


Дата добавления: 2014-12-24; Просмотров: 373; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.009 сек.