Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Явления переноса в термодинамически неравновесных системах




Явление переноса. Теплоемкость. Основы термодинамики

В термодинамически неравновесных систе­мах возникают особые необратимые про­цессы, называемые явлениями переноса, в результате которых происходит пространственный перенос энергии, массы, импульса. К явлениям переноса относятся теплопроводность (обусловлена переносом энергии), диффузия (обусловлена перено­сом массы) и внутреннее трение (обуслов­лено переносом импульса). Для простоты ограничимся одномерными явлениями пе­реноса. Систему отсчета будем выбирать так, чтобы ось х была ориентирована в на­правлении переноса.

1. Теплопроводность. Если в одной об­ласти газа средняя кинетическая энергия молекул больше, чем в другой, то с течени­ем времени вследствие постоянных стол­кновений молекул происходит процесс вы­равнивания средних кинетических энергий молекул, т. е., иными словами, выравнива­ние температур.

Перенос энергии в форме теплоты под­чиняется закону Фурье:

где j E плотность теплового потока — величина, определяемая энергией, перено­симой в форме теплоты в единицу времени через единичную площадку, перпендикулярную оси х, lтеплопроводность, dT/dx — градиент температуры, равный скоро­сти изменения температуры на единицу длины х в направлении нормали к этой площадке. Знак минус показывает, что при теплопроводности энергия переносит­ся в направлении убывания температуры

(поэтому знаки j Е и dT/dx противополож­ны). Теплопроводность l, численно равна плотности теплового потока при градиенте температуры, равном единице. Можно показать, что

где Сvудельная теплоемкость газа при постоянном объеме (количество теплоты, необходимое для нагревания 1 кг газа на 1 К при постоянном объеме), r — плот­ность газа, (v) —средняя скорость теп­лового движения молекул, < l > — средняя длина свободного пробега.

2. Диффузия. Явление диффузии за­ключается в том, что происходит самопро­извольное проникновение и перемешива­ние частиц двух соприкасающихся газов, жидкостей и даже твердых тел; диффузия сводится к обмену масс частиц этих тел, возникает и продолжается, пока су­ществует градиент плотности. Во время становления молекулярно-кинетической теории по вопросу диффузии возникли противоречия. Так как молекулы движутся с огромными скоростями, диффузия до­лжна происходить очень быстро. Если же открыть в комнате сосуд с пахучим ве­ществом, то запах распространяется дово­льно медленно. Однако противоречия здесь нет. Молекулы при атмосферном давлении обладают малой длиной свобод­ного пробега и, сталкиваясь с другими молекулами, в основном «стоят» на месте.

Явление диффузии для химически од­нородного газа подчиняется закону Фика:

jm=-Ddp/dx (48.3)

где j т — плотность потока массы — ве­личина, определяемая массой вещества, диффундирующего в единицу времени че­рез единичную площадку, перпендикуляр­ную оси х, D — диффузия (коэффициент диффузии), dr/dx—градиент плотности,

равный скорости изменения плотности на единицу длины х в направлении нормали к этой площадке. Знак минус показывает, что перенос массы происходит в направле­нии убывания плотности (поэтому знаки jт

иdr/dx противоположны). Диффузия D численно равна плотности потока массы при градиенте плотности, равном единице. Согласно кинетической теории газов,

D=1/3 <v> < l >. (48.4)

3. Внутреннее трение (вязкость). Ме­ханизм возникновения внутреннего трения между параллельными слоями газа (жид­кости), движущимися с различными ско­ростями, заключается в том, что из-за хаотического теплового движения проис­ходит обмен молекулами между слоями, в результате чего импульс слоя, движущегося быстрее, уменьшается, движущегося медленнее — увеличивается, что приводит к торможению слоя, движущегося быстрее, и ускорению слоя, движущегося медленнее.

Согласно формуле (31.1), сила внут­реннего трения между двумя слоями газа (жидкости) подчиняется закону Ньютона:

где h — динамическая вязкость (вязкость), dv/dx — градиент скорости, показывающий быстроту изменения скорости в направлении х, перпендикулярном на­правлению движения слоев, S — площадь, на которую действует сила F.

Взаимодействие двух слоев согласно второму закону Ньютона можно рассмат­ривать как процесс, при котором от од­ного слоя к другому в единицу времени передается импульс, по модулю равный действующей силе. Тогда выражение (48.5) можно представить в виде

где jp плотность потока импульса — ве­личина, определяемая полным импульсом, переносимым в единицу времени в поло­жительном направлении оси х через еди­ничную площадку, перпендикулярную оси

х, dv/dx — градиент скорости. Знак минус указывает, что импульс переносится в на­правлении убывания скорости (поэтому

dv знаки jp и dv/dx противоположны), Динамическая вязкость h численно равна плотности потока импульса при гра­диенте скорости, равном единице; она вы­числяется по формуле

Из сопоставления формул (48.1), (48.3) и (48.6), описывающих явления переноса, следует, что закономерности всех явлений переноса сходны между со­бой. Эти законы были установлены задол­го до того, как они были обоснованы и выведены из молекулярно-кинетической теории, позволившей установить, что внешнее сходство их математических вы­ражений обусловлено общностью лежаще­го в основе явлений теплопроводности, диффузии и внутреннего трения молеку­лярного механизма перемешивания моле­кул в процессе их хаотического движения и столкновений друг с другом.

Рассмотренные законы Фурье, Фика и Ньютона не вскрывают молекулярно-кинетического смысла коэффициентов l, D и h. Выражения для коэффициентов переноса выводятся из кинетической тео­рии. Они записаны без вывода, так как строгое рассмотрение явлений переноса довольно громоздко, а качественное — не имеет смысла. Формулы (48.2), (48.4) и (48.7) связывают коэффициенты перено­са и характеристики теплового движения молекул. Из этих формул вытекают про­стые зависимости между l, D и h:

Используя эти формулы, можно по най­денным из опыта одним величинам опреде­лить другие.




Поделиться с друзьями:


Дата добавления: 2014-12-24; Просмотров: 307; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.011 сек.