Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Адиабатический процесс. Политропный процесс




Адиабатическим называется процесс, при котором отсутствует теплообмен (dQ=0) между системой и окружающей средой. К адиабатическим процессам можно от-

нести все быстропротекающие процессы. Например, адиабатическим процессом можно считать процесс распространения звука в среде, так как скорость распро­странения звуковой волны настолько вели­ка, что обмен энергией между волной и средой произойти не успевает. Адиаба­тические процессы применяются в двига­телях внутреннего сгорания (расширение и сжатие горючей смеси в цилиндрах), в холодильных установках и т. д.

Из первого начала термодинамики (dQ=dU+dA) для адиабатического про­цесса следует, что

dA=-dU, (55.1)

т. е. внешняя работа совершается за счет изменения внутренней энергии системы.

Используя выражения (52.1) и (53.4), для произвольной массы газа перепишем уравнение (55.1) в виде

Продифференцировав уравнение состоя­ния для идеального газа pV=(m/M)RT, получим

Исключим из (55.2) и (55.3) температу­ру Т:

Разделив переменные и учитывая, что Срv =g (см. (53.8)), найдем

dp/p=-gdV/V.

Интегрируя это уравнение в пределах от р 1 до р 2 и соответственно от V 1 до V 2, а затем потенцируя, придем к выражению

p 2 /p l=(V1/V2)g.

или

p 1vg1 = p 2vg2.

Так как состояния 1 и 2 выбраны про­извольно, то можно записать

рVg= const. (55.4)

 

Полученное выражение есть уравнение адиабатического процесса, называемое также уравнением Пуассона.

Для перехода к переменным Т, V или р, Т исключим из (55.4) с помощью урав­нения Клапейрона — Менделеева

соответственно давление или объем:

Выражения (55.4) — (55.6) представ­ляют собой уравнения адиабатического процесса. В этих уравнениях безразмер­ная величина (см. (53.8) и (53.2))

называется показателем адиабаты (или коэффициентом Пуассона). Для одно­атомных газов (Ne, He и др.), достаточно хорошо удовлетворяющих условию иде­альности, i = 3, g=1,67. Для двухатомных газов (Н2, N2, O2 и др.) i= 5, g=1,4. Зна­чения g, вычисленные по формуле (55.7), хорошо подтверждаются экспериментом.

Диаграмма адиабатического процесса (адиабата) в координатах р, V изобража­ется гиперболой (рис.83). На рисунке видно, что адиабата (pVg=const) более крута, чем изотерма (pV =const). Это объясняется тем, что при адиабатическом сжатии 13 увеличение давления газа обусловлено не только уменьшением его объема, как при изотермическом сжатии, но и повышением температуры.

Вычислим работу, совершаемую газом в адиабатическом процессе. Запишем уравнение (55.2) в виде

Если газ адиабатически расширяется от объема V 1 до V 2, то его температура уменьшается от T 1 до T 2 и работа расши­рения идеального газа

Применяя те же приемы, что и при выводе формулы (55.5), выражение (55.8) для работы при адиабатическом расшире­нии можно преобразовать к виду

Работа, совершаемая газом при адиа­батическом расширении 12 (определяется площадью, выполненной в цвете на рис. 83), меньше, чем при изотермическом. Это объясняется тем, что при адиабатическом расширении происходит охлаждение газа, тогда как при изотермическом — темпера­тура поддерживается постоянной за счет притока извне эквивалентного количества теплоты.

Рассмотренные изохорный, изобарный, изотермический и адиабатический процес­сы имеют общую особенность — они про­исходят при постоянной теплоемкости. В первых двух процессах теплоемкости соответственно равны Cv и С р, в изотерми­ческом процессе (d T= 0) теплоемкость равна ±¥, в адиабатическом (dQ=0) теплоемкость равна нулю. Процесс, в ко­тором теплоемкость остается постоянной, называется политропным.

Исходя из первого начала термодина­мики при условии постоянства теплоемко­сти (C = const) можно вывести уравнение политропы:

pVn = const, (55.9) где n= (C- Ср)/(С-Cv) — показатель политропы. Очевидно, что при С = 0, n=g из (55.9) получается уравнение адиабаты; при С=¥, n =1 —уравнение изотермы; при С=СР, n = 0 уравнение изобары, при С = Сv, n =±¥ —уравнение изохоры. Таким образом, все рассмотренные процессы являются частными случаями политропного процесса.

§56. Круговой процесс (цикл). Обратимые и необратимые процессы

Круговым процессом (или циклом) назы­вается процесс, при котором система, пройдя через ряд состояний, возвращает­ся в исходное. На диаграмме процессов цикл изображается замкнутой кривой (рис.84). Цикл, совершаемый идеальным газом, можно разбить на процессы расши­рения (12) и сжатия (21) газа. Рабо­та расширения (определяется площадью фигуры 1 a2V 2 V 1 1) положительна (dV>0), работа сжатия (определяется площадью фигуры 2b1V 1 V 2 2) отрицательна (dV<0), Следовательно, работа, совершаемая газом за цикл, определяется площадью, охватываемой замкнутой кривой. Если за цикл совершается положительная ра­бота (цикл протекает по часовой стрелке), то он называется пря­мым (рис. 84, а), если за цикл совершает­ся отрицательная работа (цикл протекает против часовой стрел­ки), то он называется обратным (рис. 84,б).

Прямой цикл используется в тепловых двигателях — периодически действующих двигателях, совершающих работу за счет полученной извне теплоты. Обратный цикл

используется в холодильных машинах — периодически действующих установках, в которых за счет работы внешних сил теплота переносится к телу с более высо­кой температурой.

В результате кругового процесса система возвращается в исходное состоя­ние и, следовательно, полное изменение внутренней энергии газа равно нулю. По­этому первое начало термодинамики (51.1) для кругового процесса

Q=DU+A=A, (56.1)

т. е. работа, совершаемая за цикл, равна количеству полученной извне теплоты. Од­нако в результате кругового процесса система может теплоту как получать, так и отдавать, поэтому

Q=Q1-Q2,

где Q1— количество теплоты, полученное системой, q 2 — количество теплоты, от­данное системой. Поэтому термический коэффициент полезного действия для кру­гового процесса

Термодинамический процесс называет­ся обратимым, если он может происходить как в прямом, так и в обратном направле­нии, причем если такой процесс происхо­дит сначала в прямом, а затем в обратном направлении и система возвращается в ис­ходное состояние, то в окружающей среде и в этой системе не происходит никаких изменений. Всякий процесс, не удовлетво­ряющий этим условиям, является необра­тимым.

Любой равновесный процесс является обратимым. Обратимость равновесного процесса, происходящего в системе, следу­ет из того, что ее любое промежуточное состояние есть состояние термодинамиче­ского равновесия; для него «безразлично», идет процесс в прямом или обратном на­правлении. Реальные процессы сопровож­даются диссипацией энергии (из-за тре­ния, теплопроводности и т.д.), которая нами не обсуждается. Обратимые процес­сы — это идеализация реальных процес­сов. Их рассмотрение важно по двум при-чинам: 1) многие процессы в природе и технике практически обратимы; 2) обра­тимые процессы являются наиболее эконо­мичными; имеют максимальный термиче­ский коэффициент полезного действия, что позволяет указать пути повышения к. п. д. реальных тепловых двигателей.

§ 57. Энтропия, ее статистическое толкование и связь с термодинамической вероятностью

Понятие энтропии введено в 1865г. Р. Клаузиусом. Для выяснения физическо­го содержания этого понятия рассматри­вают отношение теплоты Q, полученной телом в изотермическом процессе, к темпе­ратуре Т теплоотдающего тела, называе­мое приведенным количеством теплоты.

Приведенное количество теплоты, со­общаемое телу на бесконечно малом участке процесса, равно d Q/T. Строгий теоретический анализ показывает, что приведенное количество теплоты, сообща­емое телу в любом обратимом круговом процессе, равно нулю:

Из равенства нулю интеграла (57.1), взя­того по замкнутому контуру, следует, что подынтегральное выражение d Q/T есть полный дифференциал некоторой фун­кции, которая определяется только состоя­нием системы и не зависит от пути, каким система пришла в это состояние. Таким образом,

Функция состояния, дифференциалом ко­торой является d Q/T, называется энтро­пией и обозначается S.

Из формулы (57.1) следует, что для обратимых процессов изменение энтропии

DS=0. (57.3)

В термодинамике доказывается, что эн­тропия системы, совершающей необрати­мый цикл, возрастает:

DS>0. (57.4)

Выражения (57.3) и (57.4) относятся только к замкнутым системам, если же система обменивается теплотой с внешней средой, то ее энтропия может вести себя любым образом. Соотношения (57.3) и (57.4) можно представить в виде не­равенства Клаузиуса

DS³0, (57.5)

т. е. энтропия замкнутой системы может либо возрастать (в случае необратимых процессов), либо оставаться постоянной (в случае обратимых процессов).

Если система совершает равновесный переход из состояния 1 в состояние 2, то, согласно (57.2), изменение энтропии

где подынтегральное выражение и преде­лы интегрирования надо выразить через величины, характеризующие исследуемый процесс. Формула (57.6) определяет эн­тропию лишь с точностью до аддитивной постоянной. Физический смысл имеет не сама энтропия, а разность энтропии.

Исходя из выражения (57.6), найдем изменение энтропии в процессах иде­ального газа. Так как d U=(m/M)Cv dT,

т. е. изменение энтропии DS1®2 идеального газа при переходе его из состояния 1 в со­стояние 2 не зависит от вида процесса перехода 1®2.

Так как для адиабатического процесса dQ = 0, то DS=0 и, следов




Поделиться с друзьями:


Дата добавления: 2014-12-24; Просмотров: 901; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.021 сек.