Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Основні відомості з термообробки алюмінієвих сплавів




Устаткування, інструменти, матеріали

Термічна обробка алюмінієвих сплавів

Лабораторна робота №12

Запитання для самоперевірки

Порядок виконання роботи

Для визначення якості цементації запропонованих деталей потрібно:

1) макро- і мікроаналізом установити ступінь насичення поверхні деталі вуглецем та глибину цементованого шару;

2) визначити твердість цементованого шару і серцевини деталі;

3) установити режим, термообробки і виконати гартування зразків із цементованих деталей;

4) виміряти після гартування твердість цементованого шару і серцевини деталі;

5) результати досліджень занотувати до табл. 11.1;

6) замалювати мікроструктуру цементованого шару;

7) зробити висновки за виконаною роботою.

Таблиця 11.1 - Структура і твердість досліджених деталей

Стан Мікроструктура Твердість
поверхні серцевини поверхні серцевини
До гартування        
Після гартування        

1. Сутність ХТО і її види.

2. З якою метою виконується ХТО?

3. Схарактеризуйте елементарні процеси ХТО.

4. У чому сутність цементації, для чого вона виконується?

5. Які сталі піддають цементації?

6. Способи цементації, їх особливості й використання.

7. Як змінюються хімічний склад, структура і властивості сталі після цементації?

8. Повний цикл термообробки за цементації.

9. Як змінюються структура й властивості цементованої деталі після повного циклу термообробки?

Література: [1, с. 228, 2, с. 110; 4, с. 148].

Мета роботи: ознайомитись із видами і режимами термічної обробки алюмінієвих сплавів; з'ясувати сутність структурних перетворень при загартуванні й старінні; набути практичних навичок гартування і старіння алюмінієвих сплавів.

Муфельна електрична піч, водяна ванна з киплячою водою для старіння, гартувальне середовище (холодна вода), щипці для гартування, годинник, твердомір Роквелла, комплекти зразків термічно зміцнених алюмінієвих сплавів.


Деформовані алюмінієві сплави поділяють на дві групи: термічно незміцнені та зміцнені.

До першої групи відносять чистий алюміній, а також сплави системи Al-Mn і Al-Mg. Сплави цієї групи зміцнюються тільки наклепуванням, і до них можна застосувати тільки один вид термообробки — рекристалізаційне відпалювання для знімання наклепу.

Термічно зміцнені сплави, крім відпалювання, піддають гартуванню і старінню. До цієї групи належать сплави систем Al-Cu-Mg; Al-Cu-Mg-Zn; Al-Zn-Mg; Al-Mg-Si ін. Можливість використання гартування з наступним старінням до алюмінієвих сплавів ґрунтується на змінності розчинності легуючих елементів у алюмінії зі зміною температури (рис. 12.1).

Розглянемо механізм гартування алюмінієвих сплавів на прикладі сплаву алюмінію з 5% міді. За кімнатної температура в алюмінії може розчинятися лише до 0,5% міді, а за заевтектичної температури 548 °С — 5,65%, тобто приблизно в 11 разів більше (рис. 12.2). Такий сплав за 20 °С буде складатись із двох фаз — твердого α-розчину міді з алюмінієм у хімічній сполуці CuAl2. У процесі нагрівання сплаву до високої температури, близької до евтектичної, фаза CuAl2 повністю розчиняється і вся мідь переходить у твердий α-розчин. Сплав стає однофазним. Якщо нагрітий сплав різко охолодити (загартувати у воді) до кімнатної температури, то виділення фази CuAl2 із твердого α-розчину затримається і сплав являтиме собою дуже перенасичений твердий розчин міді в алюмінії. Таким чином, мета гартування — одержати перенасичений метастабільний твердий розчин одного або кількох легуючих елементів (Сu, Мg, Zn та ін.) у твердому алюмінії.

Рисунок 12.1 - Залежність розчинності легуючих елементів у алюмінії від температури Рисунок 12.2 - Частина діаграми стану сплавів алюмінію з міддю

Алюмінієві сплави для гартування потрібно обов'язково охолоджувати у воді, тому що дифузійні процеси в них проходять занадто швидко.

У результаті гартування міцність сплаву підвищується. Такий сплав нестійкий, тому в ньому за кімнатної чи за підвищеної температури проходять зміни, що спричинюють подальше зміцнення. Таке явище називають старінням. Гартування — необхідна умова наступного зміцнення сплаву за рахунок старіння.

Старіння буває природне (за 20 °С) і штучне (за 100–200 °С). За природного старіння на окремих атомних площинах ґратки α-розчину з'являються іони, збагачені міддю (зони Гіньс-Престона) і спричиняють зміцнення сплаву. За штучного старіння процес розпаду твердого розчину йде далі, ніж за природного. Спочатку на базі зон Гіньс-Престона утворюється метастабільна фаза CuAl2 з тетрагональною ґраткою, а за 200 °С й вище виникає перехід її у стабільну фазу CuAl2, з кубічною ґраткою, виділившись із твердого розчину з наступною коагуляцією цієї фази. Виділення стабільної фази й особливо її коагуляція призводять до великого знеміцнення сплаву.

На рис. 12.3 показано криві старіння дюралюмінію (сплави системи Аl-Сu-Мg) за різних температур. Старіння дюралюмінію за кімнатної температури починається через 2–3 год і завершується через 4–5 діб. Тривалість нагрівання за штучного старіння залежить від температури старіння. При цьому міцність сплаву спочатку збільшується, досягає максимуму, а потім зменшується. Причому, чим вища температура старіння, тим швидше досягається максимум міцності й тим нижчий цей максимум. За температури 50°С старіння практично зупиняється.

Рисунок 12.3 - Зміна міцності загартованого сплаву Д16 при старінні

Після штучного старіння міцність дюралюмінію стає значно меншою, ніж після природного. Знижується також його корозійна стійкість і пластичність. Тому дюралюміній піддають природному старінню.

Дюралюміній має вузький інтервал температур гартування (500–510°С). Недогрівання призводить до неповного розчину легуючих елементів і зниження міцності, а перегрівання — до окиснення і навіть сплавлення меж зерен (перепалювання).




Поделиться с друзьями:


Дата добавления: 2014-12-24; Просмотров: 472; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.01 сек.