Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Область применения. Библиографический список




Состав

ПЛАСТИЧНЫЕ СМАЗКИ

Библиографический список

 

1. Васильева Л.С. Автомобильные эксплуатационные материалы: Учеб. для вузов / Л.С. Васильева – М.: Наука-Пресс, 2003. – 421 с.

2. Обельницкий А.М. и др. Топливо, смазочные материалы и охлаждающие жидкости. Учебник для ВУЗов по спец. «Двигатели внутреннего сгорания» / А.М. Обельницкий, Е.А. Егорушкин, Ю.Н. Чернявский; под ред. проф. А.М. Обельницкого. - М.: ИПО «Полиграм», 1995. – 272с.

3. Сафонов А.С. и др. Автомобильные автоэксплуатационные материалы / А.С. Сафонов, А.И. Ушаков, Н.Д. Юскавец. – СПб.: Гидрометиоиздат, 1998. – 233 с.

4. Анисимов И.Г. и др. Топливо, смазочные материалы, технические жидкости. Ассортимент и применение. Справочник / И.Г. Анисимов. – М.: Техинформ, 1999. – 596 с.

5. Гуреев А.А. и др. Химмотология: учебник для ВУЗов / А.А. Гуреев, И.Г. Фукс, В.Л. Лашхи. – М.: Химия, 1986. – 367 с.

6. Гуреев А.А. и др. Автомобильные эксплуатационные материалы / А.А. Гуреев, Р.Я. Иванова, Н.В. Щёголев. – М.: Транспорт, 1974. – 280 с.

7. Кириченко Н.Б. Автомобильные эксплуатационные материалы: Учеб. пособие для сред. проф. образования / Н.Б. Кириченко. – М.: Издательский центр «Академия», 2003. – 208 с.

8. Трансмиссионные масла. Пластичные смазки / Р. Балтенас, А.С. Сафонов, А.И. Ушаков, В. Шергалис. – СПб.: ООО «Издательство ДНК», 2001. – 208 с.

9. Р. Балтенас, А.С. и др. Моторные масла / Р. Балтенас, А.С. Сафонов, В. Шергалис. – СПб.: Альфа-Лаб, 2000. – 272 с.

 

 

 

Пластичные смазки - распространённый вид смазочных материалов, представляющих собой высококонцентрированные дисперсии твёрдых загустителей в жидкой среде. Чаще всего смазки - трёхкомпозитные коллоидные системы, содержащие дисперсионную среду - жидкую основу (70...90 %) дисперсную фазу – загуститель (10...15 %), модификаторы структуры и добавки - присадки, наполнители (1...15 %).

В качестве дисперсной среды используют масла нефтяного и синтетического происхождения, реже их смеси. К синтетическим маслам относят кремнийорганические жидкости - полисилкосаны, эфиры, полигликоли, фтор- и хлорорганические жидкости. Их применяют в основном для высокоскоростных подшипников, работающих в широких диапазонах температур и контактных нагрузок. Смеси синтетических и нефтяных масел применяют для более эффективного использования смазок и регулирования их эксплуатационных свойств.

Загустителями служат соли высокомолекулярных, жирных кислот - мыла, твёрдые углеводороды - церезины, петролатумы и некоторые продукты неорганического (бентонит, силикагель) или органического (кристаллические полимеры, производные карбамида) происхождения. Наиболее распространены мыла и твёрдые углеводороды. Концентрация мыльного и неорганического загустителя обычно не превышает 15 %, а концентрация твёрдых углеводородов доходит до 25 %.

Для регулирования структуры и улучшения функциональных свойств в смазки вводят добавки.

По сравнению с маслами смазки обладают следующими достоинствами:

- малый удельный расход;

- более простая конструкция машин и механизмов, следовательно, меньшая масса, более высокая надежность и ресурс;

- более продолжительный период замены;

- меньшие эксплуатационные затраты при ТО.

 

 

Пластичные смазки выполняют следующие основные функции:

- уменьшают силы трения между трущимися поверхностями;

- снижают износ и предотвращают задир (заедание) трущихся поверхностей;

- защищают металлы от коррозионного воздействия окружающей среды;

- уплотняют зазоры между сопряжёнными деталями.

Кроме основных функций смазки выполняют роль электроизоляционных материалов, защищают детали узлов трения от ударных нагрузок, снижают вибрации и шум. Практически нет смазок, хорошо выполняющих все перечисленные функции одновременно. В этом собственно и нет необходимости, поскольку различия в условиях применения выдвигают на первый план одну или две наиболее важные функции, обеспечивая надёжную работу агрегата.

Независимо от условий применения и назначения смазок они должны удовлетворять следующим основным требованиям:

- надёжно выполнять свои функции в широком диапазоне температур, удельных нагрузок и скоростей перемещения трущихся поверхностей;

- в минимальной степени изменять свои свойства в условиях эксплуатации;

- оказывать наименьшее воздействие на контактирующие с ними материалы;

- удовлетворять правилам техники безопасности и не оказывать вредного воздействия на окружающую среду;

- иметь невысокую стоимость и быть экономичными в эксплуатации.

Работа смазочного материала зависит не только от условий эксплуатации самой смазки (температура, нагрузки, скорость перемещения, окружающая среда), но и от характера работы механизма (остановки, постоянные или переменные внешние воздействия и т.д.). Эффективная работа смазочного материала определяется:

- конструктивными особенностями узла (тип, размер, характер движения);

- системой смазки и видом материала, с которым смазка контактирует во время работы;

- условиями эксплуатации узла трения;

- сроками смены смазочного материала.

Отсюда к смазочным материалам предъявляют и частные требования, например, диэлектрические и оптические свойства, водостойкость и т.д.

По назначению смазки разделяют на:

- антифрикционные - для снижения трения и износа; и в свою очередь, антифрикционные общего назначения и антифрикционные технологические (для облегчения технологических процессов обработки материалов);

- консервационные - для предохранения металлических изделий от коррозии;

- уплотнительные - для герметизации трущихся поверхностей, сальников, зазоров и др.;

- специального назначения, например, фрикционные - для увеличения трения с целью предотвращения проскальзывания, приработочные - для улучшения приработки трущихся поверхностей и др.

Подавляющее большинство относится к первым двум группам. Следует отметить условность такого разделения смазок, т.к. антифрикционные должны одновременно защищать от коррозии, консервационные должны обладать хорошими антифрикционными свойствами, а уплотнительные должны иметь хорошие смазочные и защитные свойства.

Кроме вышеперечисленных классификаций по назначению или функциональному действию, известна классификация смазок по составу. По типу загустителя смазки подразделяют на органические и неорганические. К органическим загустителям относятся мыла, твёрдые углеводороды, пигменты и некоторые кристаллические полимеры. Неорганические загустители - силикагель, бентонит, технический углерод (сажа) и некоторые другие.

Мыльные смазки в свою очередь делят на кальциевые, натриевые, литиевые, бариевые, алюминиевые и др. В зависимости от состава жиров, употребляемых для приготовления мыльных загустителей, выделяют смазки на синтетических, жирных кислотах, природных жирах и технических, жирных кислотах.

Как уже отмечалось, пластичные смазки при малых нагрузках ведут себя как твёрдые тела, не растекаются под действием собственной массы, не сбрасываются инерционными силами с поверхностей, удерживаются на вертикальных поверхностях. Под действием нагрузок, превышающих предел их прочности, смазки начинают течь подобно вязким жидкостям. Таким образом можно сформулировать принципиальные отличия смазок от жидких смазочных материалов:

- хорошее удерживание на наклонных и вертикальных поверхностях, отсутствие выдавливания из узлов трения под действием значительных нагрузок;

- высокая смазочная способность, т.е. лучшие показатели противоизносных и противозадирных свойств, особенно при больших нагрузках;

- лучшая защита металлических поверхностей от коррозионного воздействия окружающей среды;

- высокая герметизация узлов трения, предохранение их от проникновения нежелательных продуктов;

- более широкий температурный диапазон работоспособности и лучшие вязкостно-температурные характеристики;

- более надёжная и эффективная работа в жёстких условиях эксплуатации (одновременное воздействие высоких температур, давлений, ударных нагрузок, переменный режим скоростей и т.д.);

- экономичность в применении за счёт более продолжительной работоспособности и меньшего расхода.

К недостаткам следует отнести следующее:

- отсутствие отвода тепла смазываемых деталей;

- несовершенную систему подачи пластичного материала;

- низкую химическую стабильность мыльных смазок.

 




Поделиться с друзьями:


Дата добавления: 2014-12-25; Просмотров: 480; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.013 сек.