Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Используемые в нефтегазовой отрасли




БАЗОВЫЕ ЗАДАЧИ ГИДРОДИНАМИКИ,

10.1. ПОСТАНОВКА ЗАДАЧ

При промывке и цементировании скважин простейшими базовыми задачами гидромеханики, допускающими аналитическое решение, являются задачи о течении жидкости в плоской щели (между двумя параллельными бесконечными пластинами), в круглой трубе и в кольцевом пространстве между двумя соосными цилиндрами.

Для их решения необходимо исходить из следующих условий:

· жидкость несжимаема (r = const);

· течение установившееся ();

· все частицы жидкости движутся параллельно твёрдым стенкам канала, что означает, что при совмещении координатной оси Oz с направлением течения, отличной от нуля, будет лишь одна составляющая vz скорости

· концевые эффекты пренебрежимо малы, то есть, картина течения в любом сечении, нормальном к потоку, идентична , что справедливо для сечений, удалённых от концов канала на расстояние равное 0.035 d ×Re, где d - характерный размер поперечного сечения: для щели - это расстояние между плоскостями; для трубы - её диаметр; для кольцевого пространства - удвоенный зазор;

· вдоль потока действует постоянный градиент давления равный , где Dр > 0 - полный перепад давления между двумя сечениями, находящимися на расстоянии L друг от друга;

· на жидкость действует объёмная сила Fz = ±rg (Fx = Fy = 0), обусловленная только силой тяжести, где принимают знак (+), если жидкость движется вниз, и знак (-)- вверх, когда положительное направление оси Оz совпадает с направлением движения.

Скорости частиц жидкости в рассматриваемых каналах симметричны относительно плоскости yz - для щели и относительно оси Oz - для круглой трубы и кольцевого пространства, то vz = v(x) и vz= v(r) соответственно.

Поэтому, согласно соотношениям Коши и уравнениям состояния при течении жидкости в щели, отличными от 0, будут только одна скорость деформации и одно напряжение сдвига:

(10.1.1)

Для течения в трубе и кольцевом пространстве

(10.1.2)

Система дифференциальных уравнений существенно упрощается:

· уравнения движения и уравнения неразрывности удовлетворяются тождественно;

· уравнение механического состояния в плоской щели принимает вид

 

,

 

а в кольцевом пространстве

 

,

 

где DR = Dp ± rgL - гидродинамические потери давления, обусловленные только движением жидкости независимо от направления течения.

Интегрирование этих уравнений при условиях sxz = 0 при х = 0 для щели и srz = 0 при r = 0 для круглой трубы приводит к выражениям:

(10.1.3)

, (10.1.4)

где постоянная интегрирования с2 ¹ 0 только при течении жидкости в кольцевом пространстве.

Запомните, что соотношения (10.1.1) - (10.1.4) справедливы при ламинарном течении любой жидкости (ньютоновской или неньютоновской). Сохранятся они и при турбулентном режиме течения, но под величинами v, DP,sxz, srz будут пониматься усреднённые по времени значения этих величин:

.

Далее рассматриваются аналитические решения граничных задач течения жидкости в щели и в кольцевом пространстве (в зависимости от характера течения и реологических свойств жидкости).

При этом определяются основные интегральные гидродинамические характеристики потока:

· объёмный расход ;

· средняя скорость vср= Q/S;

· коэффициент сопротивления l. = 4f= 4SDP/SdW;

где S, Sd - соответственно площади поперечного сечения и боковой смоченной поверхности канала; f= t/W -коэффициент трения Фаннинга; t = SDP/Sd -касательное напряжение у поверхности канала; W=1/2rv2 - кинетическая энергия единицы объёма жидкости.

Определение объёмного расхода по заданному перепаду давления обычно называют прямой задачей гидродинамики, а определение перепада давления по заданному расходу - обратной.

Все результаты, рассматриваемые далее, относятся к решениям прямой граничной задачи, а полученные зависимости используются для вычисления гидравлических потерь. Для этой цели определяется закон сопротивления, т.е. зависимость коэффициента l от характеристик течения.

Основополагающей задачей гидродинамики (гидравлики) является экспериментальное установление закона сопротивления.

Если l не зависит от , то для коэффициента сопротивления получаем известный закон Дарси-Вейсбаха, широко используемый для определения гидравлических потерь в цилиндрических каналах при турбулентном режиме течения:

.

 

 

10.2. ЛАМИНАРНОЕ И ТУРБУЛЕНТНОЕ ТЕЧЕНИЕ

ЖИДКОСТЕЙ В ЩЕЛЕВОМ КАНАЛЕ

1. Ламинарное течение ньютоновской жидкости. Согласно соотношениям Коши и уравнениям состояния при течении жидкости в щели, отличными от 0 будут лишь одна скорость деформации и одно напряжение сдвига (10.1.1):

Из уравнений состояния сохранится лишь одно, а именно

. (10.2.1)

Сравнивая это уравнение с решением (10.1.3)

,

получаем дифференциальное уравнение относительно скорости

,

решение которого при граничном условии v(h) = 0, (2h - ширина щели) имеет вид

. (10.2.2)

Используя формулы (10.1.4), можно определять основные характеристики потока:

· объёмный расход

 

· среднюю скорость

· коэффициент сопротивления

 

,

где

· S, Sd - соответственно площади поперечного сечения и боковой смоченной поверхности канала;

· f = t / W - коэффициент трения Фаннинга;

· - касательное напряжение у поверхности канала; - кинетическая энергия единицы объёма жидкости;

· b - длина поперечного сечения щели;

· - параметр Рейнольдса для плоской щели.

Например: при r = 1000кг/м3; vср = 1 м/с; 2h = 0,01 м; m = 0,01Па×с;

имеем: Reщ = 1000; l = 0,048; DP/L = 1200 Па/м. Таким образом, на каждые 1000 м гидравлические потери составят 1.2 МПа.

2. Ламинарное течение неньютоновской жидкости Шведова - Бингама. Используя соотношение (5.1) и подставляя его в (1.87) - интенсивность касательных напряжений и (1.88) - интенсивность скорости деформации сдвига при скорости деформации объёма (x = 0), будем иметь:

 

. (10.2.3)

Знак (-) выбран из-за того, что .

Система уравнений упрощается до одного уравнения

 

(10.2.4)

Сравнивая (10.2.4) с (10.1.3), получаем уравнение скорости

(10.2.5)

и формулу для вычисления ядра потока

. (10.2.6)

Интегрируя уравнение (10.2.5) при v (h) = 0, найдём следующее распределение скорости:

(10.2.7)

Отсюда следует:

Ø при h0 = h движение жидкости происходить не будет, т.к. v (x) = 0;

Ø условием существования движения является h0 < h или, используя формулу (10.2.6),

Если учесть, что начало движения рассматриваемой жидкости обусловлено не динамическим напряжением сдвига t0, а статическим t00 > t0, то условием страгивания покоящейся жидкости будет

.

По формулам (10.1.4) определяют основные характеристики потока (впервые получены М.П. Воларовичем и А.М. Гуткиным):

 

(10.2.8)

Как видно из полученных выражений, кинематические характеристики потока Q, vср и коэффициент сопротивления l зависят от градиента давления нелинейно, что вызывает трудности при решении обратной задачи.

Если исходить из того, что практический интерес представляет случай, когда DР >>DR0 (`h0<<1), то, приняв c (`h0) = 1- 3/2`h0, получим:

(10.2.9)

где - обобщённый параметр Рейнольдса; h* = h (1+ 1/4Senщ) - приведённая вязкость жидкости Шведова - Бингама; Senщ = t02h/hvср - параметр Сен-Венана для плоской щели.

Например, при r = 1350 кг/м3, t0 = 5 Па, h = 0.04 Па ×с; vср = 1 м/с, h = 0.02 м. Получим:

 

т.е. в этом случае на каждые 1000 м гидравлические потери составляют 0.675 МПа.

2. Неньютоновская жидкость Освальда - Вейля. Используя в системе уравнений Коши соотношения (10.1.1) и (10.2.3)

 

и

 

,

 

получим .

Сопоставляя это уравнение состояния с решением (5.3), приходим

к дифференциальному уравнению относительно скорости:

 

. (10.2.10)

Интегрируя это уравнение при граничном условии v (h) = 0, получаем распределение скорости:

, (10.2.11)

где .

 

Интегральные характеристики потока при этом будут

 

(10.2.12)

где - обобщённый параметр Рейнольдса,

- приведённая вязкость жидкости Освальда -Вейля для плоской щели.

При n = 1 и k = m формулы (10.2.11) - (10.2.12) совпадут с формулами (10.2.3) - (10.2.4).

3. Турбулентный режим течения. Когда параметры Re, Re* или Re больше критических значений, решение уравнения движения записывается в виде (сравните с (10.1.3)

.

Касательное напряжение sij в зависимости от типа жидкости связано со скоростью сдвига уравнениями вида (10.2.1), (10.2.3) или (10.2.10). Напряжение Рейнольдса в силу соотношений (10.2.3) удовлетворяет уравнению Прандтля:

 

, (10.2.13)

где принимается, что величина l линейно зависит от расстояния до стенки канала s = h - х, т.е.

 

ℓ = æS (10.2.14)

где æ - константа, определяемая из опыта.

Напряжение sij имеет существенное значение лишь в непосредственной близости от стенок канала, т.е. в узкой области, состоящей из ламинарного подслоя и буферной зоны, где ламинарные и турбулентные законы течения сравнимы между собой.

В основной области течения (турбулентное ядро) можно пренебречь напряжением. Поэтому после подстановки (5.17) и (5.18) в (5.16) получим следующее исходное дифференциальное уравнение:

 

при s ³ s1, (10.2.15)

где t* = DRh/L – приведённое значение касательного напряжения; s1 – внешняя граница буферной зоны.

Упрощение t* введено Прандтлем без какого-либо физического обоснования, но большой погрешности в решение не вносит. Если, кроме того, ввести обозначение для динамической скорости на стенке канала , то уравнение (10.2.15) примет вид

 

при s ³ s1.

Интегрируя это уравнение при условии , получаем универсальный закон распределения скорости:

при s ³ s1. (10.2.16)

Многочисленные экспериментальные подтверждения показали, что логарифмическое распределение (10.2.16) достаточно хорошо описывает профили скорости при турбулентных течениях различных жидкостей в плоских и круглых каналах с гладкими и шероховатыми стенками вплоть до больших значений параметра Рейнольдса (за исключением узких пристенных областей). Различия могут составлять лишь входящие параметры.

10.3. ЛАМИНАРНОЕ И ТУРБУЛЕНТНОЕ ТЕЧЕНИЕ

ЖИДКОСТЕЙ В КОЛЬЦЕВОМ КАНАЛЕ

 

1. Для ньютоновской жидкости, используя соотношение для скорости деформации и напряжения сдвига (10.1.1) в системе уравнений (1.85), получаем простейшее уравнение состояния .

 

Сравнивая с решением (10.1.4), получаем для скорости:

 

.

 

Решая это дифференциальное уравнение при граничных условиях v(aR) = v(R) = 0, получаем:

 

, (10.3.1)

где aR и R (0 £ a £ 1) - радиусы внутреннего и внешнего цилиндров, ограничивающих кольцевой канал.

, . (10.3.2)

Скорость жидкости будет максимальной при , а максимальные характеристики потока при этом будут:

 

(10.3.3)

где

 

Reкр - параметр Рейнольдса для кольцевого канала.

При a > 0.3 j» 1.5 и поэтому l» 96/Reкр.

Кольцевой цилиндрический канал с соотношением радиусов окружностей сечения a > 0.3 и плоская щель с параметрами сечения 2h = R(1-a) b = pR(1+a) эквивалентны по интегральным гидродинамическим характеристикам при ламинарном течении ньютоновской жидкости (средняя скорость, расход, коэффициент трения, перепад давления). Переход от ламинарного режима течения к турбулентному в кольцевом пространстве наступает быстрее, чем в плоской щели, так как . При a = 0 (w = 0, j = 0) из формул (5.21) - (5.23) получаются известные формулы Гагена - Пуазейля, характеризующие течение жидкости в круглой трубе:

где - параметр Рейнольдса для трубы.

2. Для ньютоновской жидкости Шведова - Бингама течение в кольцевом канале возможно лишь при соблюдении условия

.

Аналитического решения этой задачи нет, возможно только численное. В результате сравнения с решением для кольцевого цилиндрического канала делается полезный вывод о том, что при течении жидкости Шведова - Бингама имеет место гидравлическая эквивалентность кольцевого цилиндрического канала и плоской щели, если DР>2DP0: a > 0.3; 2h=R(1-a); b = pR(1- a); t¢0/t0 =4/3j1 = 1.16 ¸ 1.17, где t¢0 и t0 - соответственно предельные напряжения сдвига для жидкостей в щелевом и кольцевом каналах.

Если принять j1 = ¾, т.е. h* = h(1 + 1/8 Sen), то последнее требование опускается. Аналогично первой задаче требование .

3. Для неньютоновской жидкости Освальда - Вейля задача решена только численно.

В предельном случае, когда R ® 0 (a = 0, w = 0, R2 = R), для распределения скорости в сечении круглой трубы имеем

,

где .

При этом основные интегральные характеристики потока жидкости в трубе принимают вид

 

 

где - обобщённый параметр Рейнольдса,

 

- приведённая вязкость жидкости для трубы.

4. При турбулентном режиме течения закон сопротивления слабо зависит от формы канала (круглая труба, кольцевое пространство, щель). В диапазоне чисел Рейнольдса 2 103 < Re k £ 105 коэффициент сопротивления рассчитывается по формуле Блазиуса .

 

СПИСОК ЛИТЕРАТУРЫ

 

1. Гиргидов А.Д. Механика жидкости и газа (гидравлика).- Санкт-Петербург.: Издательство СПбГПУ, 2002. - 544с.

2. Рабинович Н.Р. Инженерные задачи механики сплошной среды в бурении. - М.: Недра, 1989. - 270 с.

3. Ершов Л.В., Максимов В.А. Математические основы физики горных пород. - М.: МГИ, 1968. - 254 с.

4. Тёркот Д., Шуберт Дж. Геодинамика. Геологические приложения физики сплошных сред. – М.: Мир, 1985. – 375 с.

5. Кутепов А.М., Полянин А.Д., Запрянов З.Д., Вязьмин А.В., Казенин Д.А. Химическая гидродинамика. Справочное пособие. - М.: «Бюро Квантум», 1996. - 336 с.

6. Седов Л.И. Механика сплошной среды. – М.: Наука, Главная редакция физико-математической литературы, 1970, Т.1. – 492 с.

7. Седов Л.И. Механика сплошной среды. – М.: Наука, Главная редакция физико-математической литературы, 1970, Т.2. – 568с.

 




Поделиться с друзьями:


Дата добавления: 2014-12-26; Просмотров: 1012; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.011 сек.