Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Определенный интеграл, основные теоремы




Определённым интегралом от непрерывной функции f (x) на конечном отрезке [ a, b ] (где ) называется приращение какой-нибудь её первообразной на этом отрезке. При этом употребляется запись

Числа a и b называются соответственно нижним и верхним пределами интегрирования, а отрезок [ a, b ] – отрезком интегрирования.

Основные теоремы:

Теорема. Определенный интеграл от непрерывной функции равен разности значений любой ее первообразной, вычисленных для верхнего и нижнего пределов интегрирования:

Формула Ньютона-Лейбница:

Пусть функция f (x) непрерывна на [ a; b ], а F (x) – какая-либо первообразная функции f на этом отрезке. Тогда

Таким образом, для вычисления определенного интеграла нужно найти какую-либо первообразную F функции f, вычислить ее значения в точках a и b и найти разность F (b) – F (a).

Св-ва:

1.

2.

3.

4.

5.

6. Если m≤f(x)≤M, то m(b-a)≤ M(b-a)

17. Понятие о дифференциальном уравнении: его порядке, общем и частном решении.

Обыкновенным дифференциальным уравнением наз-ся уравнение, связывающее искомую функцию, переменную и производные различных порядков данной функции.

В общем случае дифференциальное уравнение можно записать так G(x,y,y`,…,y(n))=0 (1), где G- некоторая ф-ия n+2 переменных (n˃0), при этом n-порядок старшей производной, входящей в запись, наз-ся порядком дифференциального уравнения.

ПР:: x2y```-xy`=0 Обыкновенное диф-ое ур-ие третьего порядка.

Дифференциальное уравнение n-го порядка наз-ся разрешенным относительно старшей производной, если оно имеет вид:

y(n)=F(x,y,y`,…yn-1), где F – некоторая ф-ия n+1 переменной.

Решением диф-го ур-ия (1) наз-ся такая ф-ия у=у(х), кот. при подстановке её в это ур-ие обращает его в тождество.

Пр: ф-ия у=sinx яв-ся решением уравнения у```+у` =0, т.к. (sinx)```+(sinx)`=0 для любых х

Задача о нахождении решения некоторого дифференциального уравнения наз-ся задачей интегрирования данного диф-го уравнения.

График решения дифференциального уравнения наз-ся интегральной кривой.

ОБЩИМ РЕШЕНИЕМ диф-го ур-ия (1) n-го порядка наз-ся такое его решение y=φ(Хj C1,…Cn), кот. яв-ся функцией переменной х и произвольных постоянных С12,…Сn

ЧАСТНЫМ РЕШЕНИЕМ диф-го ур-ия наз-ся решение, кот. получено из общего решения, при некоторых конкретных числовых значениях постоянных С1, С2, … Сn

18. Дифференциальные уравнения первого порядка: с разделяющимися переменными.

Обыкновенное дифференциальное уравнение 1-го порядка (n =1) имеет вид: или, если его удается разрешить относительно производной: . Общее решение y=y(x,С) или общий интеграл уравнения 1-го порядка содержат одну произвольную постоянную. Единственное начальное условие для уравнения 1-го порядка позволяет определить значение константы из общего решения или из общего интеграла. Таким образом, будет найдено частное решение или, что тоже, будет решена задача Коши. Вопрос о существовании и единственности решения задачи Коши является одним из центральных в общей теории обыкновенных дифференциальных уравнений. Для уравнения 1-го порядка, в частности, справедлива теорема, принимаемая здесь без доказательства.

Определение. Дифференциальным уравнением с разделяющимися переменными называется уравнение вида

или уравнение вида




Поделиться с друзьями:


Дата добавления: 2015-04-24; Просмотров: 3406; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.014 сек.