Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Моделирование задачи оптимизации производства методами линейного программирования




ТЕМА 2.2. ЛИНЕЙНОЕ ПРОГРАММИРОВАНИЕ

Рекомендуемые темы рефератов

Самостоятельная работа студентов

1. Классификация экономических моделей.

2. Сущность и значимость экономико-математического моделирования.

3. Этапы экономико-математического моделирования.

4. Основные экономические институты и их характеристики.

5. Область применения экономико-математических моделей.

Литература для самостоятельной работы

1. Волкова В.Н., Денисов А.А. Теория систем: Учеб. пособие. М.: Высшая школа, 2006. –511 с.

2. Вентцель Е.С. Исследование операций: Задачи, принципы, методология. –М.: Высшая школа, 2005. – 208 с.

3. Волкова В.Н., Денисов А.А. Теория систем: Учеб. пособие. М.: Высшая школа, 2006. –511 с.

4. Моделирование рисковых ситуаций в экономике и бизнесе: Учебное пособие для студентов вузов / А. М. Дубров, Б. А. Лагоша, Е. Ю. Хрусталев, Т. П. Барановская; Под ред. Б. А. Лагоши. – 2-е изд. М.: Финансы и статистика, 2003. –222 с.

5. Моделирование экономических процессов: Учебник для студентов вузов, обучающихся по специальностям экономики и управления (060000) / Под ред. М.В. Грачёвой, Л.Н. Фадеевой, Ю.И. Черемных. М.: ЮНИТИ-ДАНА, 2005. –351 с.

6. Шелобаев С.И. Математические методы и модели в экономике, финансах, бизнесе: Учеб. пособие для вузов. –2‑е изд. М.: ЮНИТИ-ДАНА, 2005. –287 с.

 


2.2.1. МОДЕЛИРОВАНИЕ ЗАДАЧИ ОПТИМИЗАЦИИ ПРОИЗВОДСТВА МЕТОДАМИ

ЛИНЕЙНОГО ПРОГРАММИРОВАНИЯ 77

2.2.2. ГЕОМЕТРИЧЕСКАЯ ИНТЕРПРЕТАЦИЯ ЗАДАЧИ ЛИНЕЙНОГО ПРОГРАММИРОВАНИЯ 79

2.2.3. ОБЩАЯ ЗАДАЧА ЛИНЕЙНОГО ПРОГРАММИРОВАНИЯ 82

2.2.4. УСТОЙЧИВОСТЬ ОПТИМАЛЬНОГО РЕШЕНИЯ 84

2.2.5. ОБЬЕКТИВНО-ОБУСЛОВЛЕННЫЕ ОЦЕНКИ_______ 85

2.2.6. ДВОЙСТВЕННАЯ ЗАДАЧА ЛИНЕЙНОГО ПРОГРАММИРОВАНИЯ 86

2.2.7. ПРИМЕНЕНИЕ ОСНОВНОЙ ЗАДАЧИ ЛИНЕЙНОГО ПРОГРАММИРОВАНИЯ К

РЕШЕНИЮ НЕКОТОРЫХ ЭКОНОМИЧЕСКИХ ЗАДАЧ 89

2.2.8. ПРАКТИЧЕСКИЙ БЛОК 92

2.2.9. САМОСТОЯТЕЛЬНАЯ РАБОТА СТУДЕНТОВ 104

Линейное программирование является одним из методов решения общих задач оптимизации, в которых учитывается большое число переменных, подчиненных определенным ограничениям. При решении этих задач необходимо получить оптимальное значение определенного критерия эффективности (функции цели), например прибылей, затрат, количества произведенных продуктов или других показателей, при условии, что удовлетворяются поставленные ограничения. Эти ограничения в свою очередь носят различный характер и объясняются условиями производства, управления, сбыта, хранения, наличием сырья или законодательными положениями.

Линейное программирование можно использовать для решения задач оптимизации, в которых выполняются следующие условия:

1. Необходимо наличие линейной функции цели, оптимальное значение которой необходимо отыскать. Требование линейности существенно для применения методов, изложенных в этой и следующей теме. Линейность означает, например, что для изготовления 10 изделий потребуется в10 раз больше средств, чем для получения одного изделия, или для получения 5 изделий уйдет в 5 раз больше времени, чем на изготовление одного изделия, и т.д. Если же такое допущение пропорциональной зависимости неверно или нельзя получить линейную функцию за счет преобразования переменных, то методы линейного программирования неприменимы.

2. Ограничения также должны быть заданы в виде системы линейных равенств или неравенств.

Если задача поставлена правильно, то можно использовать методы линейного программирования для ее решения.

Рассмотрим следующую производственную задачу:

Необходимо произвести два вида продукции в объемах х 1 и х 2, используя три ресурса, которые имеются в количестве b 1, b 2, b 3, соответственно. Известны нормативы потребления ресурсов на производство единицы первого и второго вида продукции:

a 11-количество первого ресурса, необходимого для производства единицы первого вида продукции;

a 12-количество первого ресурса, необходимого для производства единицы второго вида продукции;

a 21-количество второго ресурса, необходимого для производства единицы первого вида продукции;

a 22-количество второго ресурса, необходимого для производства единицы второго вида продукции;

a 31-количество третьего ресурса, необходимого для производства единицы первого вида продукции;

a 32-количество третьего ресурса, необходимого для производства единицы второго вида продукции.

Пусть c 1 и c 2 – прибыль от реализации единицы первого и второго вида продукции. Это постоянные факторы данной задачи.

Пример 2.2.1. Придадим постоянным факторам конкретные числовые значения и сведем их в табл.2.2.1.

Таблица 2.2.1.

  Изделие 1 (х 1) Изделие 2 (х 2) Наличие
Ресурс 1 a 11 = 2 a 12 = 1 b 1 = 12
Ресурс 2 a 21= 2 a 22 = 3 b 2 = 18
Ресурс 3 a 31 = 1 a 32 = 3 b 3 = 15
Прибыль c 1 = 5 c 2 = 6  
           

Производственная задача формулируется следующим образом:

Найти такие объемы производства продукции х 1 и х 2, при которых потребление ресурсов в соответствии с нормативами не превышало бы их наличия, и при этом прибыль от реализации продукции была бы максимальна.

Предполагая, что количество потребляемых ресурсов, а также прибыль пропорциональны объемам производства, получаем следующую математическую модель задачи:

(I) 2 х 1 + 1 х 2 £ 12

(II) 2 х 1 + 3 х 2 £ 18

(III) 1 х 1 + 3 х 2 £ 15 (2.2.1.)

х 1 ³ 0, х 2 ³ 0,

F =5 х 1 + 6 х 2 ® max.

Система неравенств (2.2.1) отражает ограничения на потребляемые ресурсы, а целевая функция F определяет прибыль, которую необходимо максимизировать. Пару чисел х 1 и х 2, удовлетворяющих системе ограничений (2.2.1), будем называть допустимым планом, а допустимый план, дающий максимальное значение целевой функции F – оптимальным планом (решением).




Поделиться с друзьями:


Дата добавления: 2015-04-24; Просмотров: 721; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.016 сек.