Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Усилия от нагрузок




Многоэтажныxе многопролетные рамы каркасных зданий имеют преимущественно однообразную (регуляр­ную) расчетную схему с равными пролетами или со сред­ним укороченным пролетом на оси симметрии, а также с одинаковой нагрузкой по ярусам (рис. 4.1, а). Узлы стоек таких рам, расположенные на одной вертикали, имеют примерно равные углы поворота и, следовательно, равные узловые моменты с нулевой точкой моментов в середине высота этажа (рис. 4.1, б). Это дает осно­вание расчленить многоэтажную раму на ряд одноэтаж­ных рам с высотой стоек (колонн), равной половине вы­соты этажа, с шарнирами по концам стоек, кроме пер­вого этажа.

Рис. 4.1. Расчетные схемы многоэтажных рам (а) и эпюра моментов многоэтажной колонны (б)

 

На вертикальную нагрузку необходимо рассчитывать три такие одноэтажные рамы: верхнего, среднего и пер­вого этажа. Если число пролетов рамы больше трех, то практически заменяют трехпролетной рамой и полагают изгибающие моменты в средних пролетах многопролетной рамы такими же, как и в среднем пролете трехпролетной рамы.

При расчете по методу перемещений число неизвест­ных углов поворота равно числу узлов в одном ярусе рамы. Горизонтальным смещением при вертикальных нагрузках обычно пренебрегают. При расчете по методу сил в качестве неизвестных принимают опорные момен­ты ригелей одного яруса рамы и сводят задачу к реше­нию трехчленных уравнений балки на упруговращающихся опорах. Расчет также можно выполнять по таб­лицам прил. 1. В таблицах опорные моменты ригелей рамы, имеющей колонны с одинаковыми сечениями:

, (4.3)

где α, β — табличные коэффициенты, зависящие от схемы загруже-ния постоянной и временной нагрузками и от отношения суммы по­гонных жесткостей стоек, примыкающих к узлу, к погонной жестко­сти ригеля; g, v — постоянная и временная нагрузки на 1 м ригеля; l — пролет ригеля между осями колонн.

Изгибающие моменты в стойках для каждой схемы загружения рамы определяют по разности опорных мо­ментов ригелей в узле, распределяя ее пропорциональ­но погонным жесткостям стоек.

Изгибающие моменты в пролетных сечениях ригелей, а также поперечные силы определяют обычными спосо­бами как в однопролетной балке, загруженной внешней нагрузкой и опорными моментами по концам.

При расчете рам целесообразно учитывать образова­ние пластических шарниров и выравнивать изгибающие моменты для достижения экономического и производст­венного эффекта: облегчения сборных стыков, увеличе­ния повторяемости элементов опалубки и арматуры, упрощения армирования монтажных узлов, облегчения условий бетонирования их и т. п. Для этого раму (как и ригель балочного перекрытия) рассчитывают на дей­ствие постоянной нагрузки и различных загружений временной нагрузкой как упругую систему. Затем для каждого из перечисленных загружений строят свою до­бавочную эпюру моментов, которую суммируют с эпю­рой упругой системы.

Величина выравненного момента не оговаривается, но для его определения следует выполнить расчеты по предельным состояниям второй группы. Практически не­обходимо, чтобы выравненный момент в расчетном сечении составлял не менее 70 % момента в упругой схеме.

В рамных конструкциях целесообразно намечать ме­ста образования пластических шарниров на опорах ри­гелей и уменьшать опорные моменты. Допустим, что ра­ма рассчитана как упругая система и для определенного загружения получена эпюра моментов (рис. 4.2. а). Если теперь для этого же загружения построить добавоч­ную эпюру моментов, то добавочный опорный момент ΔМ будет заданной величиной, и вследствие этого рассмат­риваемую раму и систему канонических уравнений рас­членяют на две более простые системы с меньшим чис­лом неизвестных (pиc. 4.2, б), Выравненная эпюра М ригелей рамы изображена на рис. 4.2, в.

Рис. 4.2. К расчету многоэтажных рам на вертикальные нагрузки

по выровненным моментам

 

При упрошенном способе выравнивания моментов ри­гели многоэтажных и многопролетных рам загружают временной нагрузкой через пролет и постоянной нагруз­кой во всех пролетах, при этом получают эпюру момен­тов с максимальными моментами в пролетах и на стой­ках, которую принимают в качестве выравненной эпюры моментов. Опорные моменты ригелей в такой выравненной эпюре моментов при отношениях ин­тенсивности временной и постоянной нагрузок v/g≤S обычно составляют не менее 70% максимального мо­мента в упругой схеме. В расчете по выравненным мо­ментам необходимо, чтобы в сечениях стоек рам момент продольной силы относительно центра тяжести сжатой зоны составлял не менее 70% соответствующего момен­та в упругой схеме, а в сечениях стоек рам, работающих по случаю 2, кроме того, воспринималась полная про­дольная сила и, по крайней мере, половина изгибающего момента в упругой схеме.

Расчет на горизонтальные (ветровые) нагрузки вы­полняют приближенным методом. Распределенную гори­зонтальную нагрузку заменяют сосредоточенными сила­ми, приложенными к узлам рамы (рис. 4.3). Нулевую точку эпюры моментов стоек всех этажей рамы, кроме первого, считают расположенной в середине высоты этажа, а в первом этаже при защемлении стоек в фунда­менте — на расстоянии 2/3 высоты от места защемления.

Рис. 4.3. К расчету многоэтажных рам на горизонтальные нагрузки

Ярусные поперечные силы рамы

; и т.д.; (4.4)

они распределяются между отдельными стойками пропорционально жесткостям:

 

; (4.5)

здесь В – жесткость сечения стойки; m − число стоек в ярусе.

Крайние стойки рамы, имеющие степень защемления в узле меньшую, чем средние стойки (поскольку к край­нему узлу примыкает ригель только с одной стороны), воспринимают относительно меньшую долю ярусной по­перечной силы, что учитывается в расчете условным уменьшением жесткости крайних стоек путем умноже­ния на коэффициент β<1, определяемый по табл. 4.1.

Таблица 4.1

Значения коэффициента β для уменьшения жесткости крайних стоек многоэтажных рам при расчете на горизонтальные нагрузки.

Коэффициент Все этажи, кроме первого, при Первый этаж
0,25 0,5        
β 0,54 0,56 0,62 0,7 0,75 0,79 0,9

Обозначения: ­­−погонная жесткость ригеля крайнего пролета; − погонная жесткость крайней стойки, примыкающей к узлу снизу.

По найденным поперечным силам определяют изгиба­ющие моменты на стойках всех этажей, кроме первого:

(4.6)

Для первого этажа изгибающий момент стойки в верхнем и нижнем сечениях

; (4.7)

При определении опорных моментов ригелей суммар­ный момент в узле рамы от выше и ниже расположен­ных стоек распределяется между ригелями пропорцио­нально их погонным жесткостям. В крайнем узле момент ригеля равен сумме моментов стоек.




Поделиться с друзьями:


Дата добавления: 2015-03-29; Просмотров: 1177; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.018 сек.