Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Задачи на составление дифференциальных уравнений




Уравнения с разделяющимися переменными

Понятие дифференциального уравнения

Уравнение, содержащее независимую переменную х, искомую функцию у=f (x), а также ее производные у', у'', и т.д. называется обыкновенным дифференциальным уравнением. Общий вид дифференциального уравнения:

 

F (x, y, y', y'',…, y(n)) = 0,(29)

 

Порядком дифференциального уравнения называется порядок наивысшей производной, входящей в это уравнение.

Например, у'+ху-5=0 – уравнение первого порядка, у''+6у'+х=0 – уравнение второго порядка.

Общий вид уравнения первого порядка:

 

F (x, y, y') = 0, (30)

 

Общим решением дифференциального уравнения называется функция, удовлетворяющая двум условиям: во-первых, эта функция должна удовлетворять данному дифференциальному уравнению, т.е. при подстановке в уравнение должна обращать его в тождество; во-вторых, количество произвольных постоянных в этой функции должно быть равным порядку данного уравнения.

Общее решение дифференциального уравнения n- го порядка имеет вид:

 

у = f (x, C1, C2,….,Cn), (31)

 

а общее решение дифференциального уравнения I порядка

 

у = f (x, C), (32)

 

Из общего решения путем вычисления постоянных интегрирования, исходя из заданных дополнительных условий, можно найти частные решения данного уравнения.

Дифференциальными уравнениями описывают различные процессы в физике, химии, биологии, фармации.

Из уравнений первого порядка рассмотрим уравнения с разделяющимися переменными.

 

 

Уравнение с разделяющимися переменными имеет вид у'= (х,у), причем его правая часть может быть представлена в виде произведения двух отдельных функций: . Тогда

Преобразуем это уравнение, разделив переменные справа и слева:

 

 

Общий вид уравнения с разделенными переменными

 

f (y)dy= (x)dx.

 

Уравнение решается непосредственным интегрированием: слева по переменной у и справа по переменной х с прибавлением постоянной интегрирования С:

 

или F (y)=Ф (х)+С.

 

Решая это уравнение, находим:

 

у = .

 

Таким образом, алгоритм решения дифференциального уравнения с разделяющимися переменными следующий:

а) если уравнение содержит производную, то представить ее в виде ;

б) преобразовать уравнение, перенося все члены его, содержащие у, в левую часть, содержащие х – в правую;

в) проинтегрировать по общим правилам левую часть по аргументу у и правую – по аргументу х с прибавлением постоянной интегрирования С.

г) решая полученное уравнение, найти искомую функцию.

Пример16. Найти общее решение уравнения y'=2xy и частное решение, соответствующее условию

y=2 при x=0, (33)

 

Решение. Представим производную y' в виде отношения дифференциалов:

 

.

Разделим переменные:

;

 

Проинтегрируем полученное уравнение:

 

ln y=x +C.

 

Так как в уравнение входит lny, то постоянную удобнее выразить в виде логарифма:

 

lny=х +lnC

 

lny- lnС=x

ln

Потенцируя это равенство, получим:

 

Отсюда , и для общего решения имеем

у=Се , (34)

 

Для нахождения частного решения подставим начальное условие (33) в (34):

 

, т.е. С=2 и искомое частное решение будет иметь вид

 

, (35)

 

Задача о скорости размножения бактерий. Скорость размножения бактерий пропорциональна их количеству. В начальный момент имелось 100 бактерий, в течение трех часов их число удвоилось. Найти зависимость количества бактерий от времени.

Решение. Пусть N – количество бактерий в момент времени t. Тогда согласно условию

 

, (36)

 

где k - коэффициент пропорциональности. Уравнение (36) представляет собой уравнение с разделяющимися переменными и его решение имеет вид:

 

, (37)

 

Из начального условия известно, что . Следовательно,

и .

 

Из дополнительного условия . Тогда

, , .

 

Таким образом, для искомой функции получаем:

 

, (38)

 

Задача об увеличении количества фермента. В культуре пивных дрожжей быстрота прироста действующего фермента пропорциональна его начальному количеству x. Первоначальное количество фермента а в течение часа удвоилось. Найти зависимость x(t).

 

Решение. По условию задачи дифференциальное уравнение процесса имеет вид

 

, (39)

 

где k – коэффициент пропорциональности. Общее решение уравнения (39) (уравнение с разделяющимися переменными) имеет вид:

 

, (40)

 

Постоянную С найдем из начального условия :

 

.

 

Тогда

, (41)

 

Известно также, что . Значит

 

, отсюда и окончательно имеем

 

, (42)

3. Цель деятельности студентов на занятии:

Студент должен знать:

1. Определения производной и дифференциала функции.

2. Физический и геометрический смыслы производной.

3. Таблицу производных основных элементарных функций.

4. Правила дифференцирования.

5. Аналитический и геометрический смыслы дифференциала.

6. Понятия неопределенного и определенного интегралов.

7. Таблицу основных интегралов.

8. Основные свойства неопределенного и определенного интегралов.

9. Основные методы интегрирования.

10. Определение обыкновенного дифференциального уравнения.

11. Понятие общего и частного решений дифференциального уравнения.

12. Определение дифференциального уравнения с разделяющимися переменными и алгоритм его решения.

Студент должен уметь:

1.Вычислять производные и дифференциалы функций.

2.Применять дифференциал функции в приближенных вычислениях.

3.Вычислять неопределенные и определенные интегралы различными методами.

4.Вычислять средние значения функций, площади плоских фигур, работу переменной силы.

5.Находить решения дифференциальных уравнений с разделяющимися переменными.

 

 

4.Содержание обучения:

Теоретическая часть:

1. Задачи, приводящие к понятию производной функции.

2. Геометрический и физический смыслы производной.

3.Производная сложной функции.

4.Дифференциал функции. Геометрический и аналитический смыслы дифференциала.

5.Применение дифференциала функции в приближенных вычислениях.

6.Первообразная функции. Неопределенный интеграл. Основные свойства неопределенного интеграла.

7.Основные методы интегрирования.

8.Задачи, приводящие к понятию определенного интеграла.

9.Формула Ньютона-Лейбница. Основные свойства определенного интеграла.

10.Приложения определенного интеграла: вычисление площадей плоских фигур, вычисление средних значений функций, вычисление работы переменной силы.

11.Дифференциальные уравнения первого порядка с разделяющимися переменными.

 

Практическая часть:

1.Найдите производные и дифференциалы функций:

1) ; 4) y= ;

2)y= ; 5) у=arccosx;

 

3) y=e3x+1; 6) y= ;

 

 

2.Решите задачу:

Определить ускорение точки в указанные моменты времени, если скорость точки, движущейся прямолинейно, задается уравнениями:

а) V = t2 + 2 t, t = 3 c; б) V = 4 sin , t = .

 

3. Вычислите приращение функции, соответствующее изменению аргумента от х1 до х2:

1) у = 2 х3 - 4х; х1 = 1; х2 = 1, 02;

2) у = 3 х2 - 2х; х1 = 2; х2 = 2,001;

 

4.Найдите интегралы, используя метод разложения:

 

1) ; 3) ;

 

2) ; 4) ;

 

5.Найдите интегралы методом замены переменной:

1) ; 3) ;

 

2) ; 4) ;

 

6. Найдите интегралы методом интегрирования по частям:

 

1) ; 3) ;

 

2) ; 4) ;

 

7. Вычислите определенные интегралы методом замены переменной:

 

1) 3)

 

2) 4)

 

8.Вычислите определенные интегралы методом интегрирования по частям:

 

1) 3)

 

2) 4)

 

 

9. Вычислите площади фигур, ограниченных линиями:

 

1) у=х2 и у= х3.

 

2) и у=х.

 

 

10. Найдите средние значения функций:

1) у=соsх на отрезке .

2) на отрезке .

 

11. Вычислите работу переменной силы:

1) при перемещении материальной точки вдоль оси абсцисс из положения с абсциссой в положение с абсциссой

2) при прямолинейном перемещении материальной точки из положения с абсциссой в положение с абсциссой .

 

12. Решите дифференциальные уравнения первого порядка с разделяющимися переменными:

 

1) у= 2х2+1; 5) у (х+1)=1;

2) у=5у; 6) еу у=1;

3) 3хdх= 2уdу; 7) ех у=1;

4) х 2 d у - у 2 d х = 0; 8) = 2 х2 + 1;

 

13.Решите дифференциальные уравнения и найдите их частные решения, соответствующие заданным дополнительным условиям:

 

1) при условии: ;

2) при условии: ;

3) при условии: ;

 

4) при условии: .

 

 

5.Перечень вопросов для проверки исходного уровня знаний:

1. Дайте определение производной функции.

2. Сформулируйте основные правила дифференцирования.

3. Запишите формулу производной сложной функции.

4.В чем заключаются физический и геометрический смыслы производной функции?

5. Что называется дифференциалом функции?

6. В чем заключается геометрический смысл дифференциала функции?

7.Дайте определение первообразной функции.

8.Приведите основные свойства неопределенного интеграла.

9.Запишите формулу интегрирования по частям.

10.Дайте геометрическую интерпретацию определенного интеграла.

11.Запишите формулу Ньютона-Лейбница

12.Дайте определение обыкновенного дифференциального уравнения.

13.Чем отличаются частное и общее решения дифференциального уравнения?

 

6. Перечень вопросов для проверки конечного уровня знаний:

1. В чем состоит физический смысл производной второго порядка?

2. В чем заключается аналитический смысл дифференциала?

3. Как используется дифференциал для вычисления погрешностей?

4.Какие две основные задачи, связанные с физическим и геометрическим истолкованием производной, решаются с помощью интегрирования?

5.Как проверить правильность нахождения неопределенного интеграла?

6.Можно ли результат вычисления определенного интеграла проверить дифференцированием?

7.На чем основано применение определенного интеграла для вычисления площадей плоских фигур?

8.Содержат ли частные решения дифференциального уравнения произвольные постоянные?

9.Приведите последовательность решения дифференциального уравнения первого порядка с разделяющимися переменными.

 

7. Хронокарта учебного занятия:

1. Организационный момент – 5 мин.

2. Разбор темы – 30 мин.

3.Решение примеров и задач-60 мин.

4. Текущий контроль знаний -35 мин.

5. Подведение итогов занятия – 5 мин.

8. Перечень учебной литературы к занятию:

1. Морозов Ю.В. Основы высшей математики и статистики. М., «Медицина», 2004, §§ 2.1-2.7, 2.10-2.16, 5.1-5.4, 6.1-6.7, 7.1, 7.2.

2.Павлушков И.В. и др. Основы высшей математики и математической статистики. М., «ГЭОТАР-Медиа», 2006, §§2.1, 2.2, 4.1, 4.2, 5.1-5.6, 6.1-6.3.

 

 




Поделиться с друзьями:


Дата добавления: 2015-04-24; Просмотров: 5132; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.1 сек.