Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Линейное дифференциальное уравнение 2-го порядка




Определение: Линейное дифференциальное уравнение (ДУ) второго порядка вида

, (1)

называется неоднородным или неавтономным уравнением. Ему соответствует однородное или автономное д.у.

(2)

Решение ищется в виде , уравнение

(3)

называется характеристическим уравнением. Найдем решения (3)

Возможны три качественно различных случая

,

А) действительные различные корни.

Тогда

 

, поэтому если , то , если , то

тогда .

Нулевое решение - асимптотически устойчиво при

асимптотически неустойчиво при

седловое при .

Б) два равных корня.

Тогда (5)

- решение асимптотически устойчиво

- решение асимптотически неустойчиво

Замечание при , т.к. (правило Лапиталя)

Результат при

 

апериодический процесс, затухание.

Нас интересуют графики x(t), как функции времени t, и фазовые портреты, соответствующие всем рассмотренным случаям. И то, и другое зависит от параметров p и q. Для наглядности введем в рассмотрение плоскость параметров p и q. Граничному случаю, разделяющему разные случаи, отвечает равенство , которому на плоскости соответствует парабола

. На рисунке приведена бифуркационная диаграмма и соответствующие разным областям фазовые портреты.Разбиение плоскости параметров p и q на области соответсвующим различными корням l1 и l2 характеристического уравнения: комплексные с отрицательными действительными частями(устойчивый фокус),3) комплексные с положительными действительными частями(неустойчивый фокус), 4) действительные отрицательные(устойчивый узел), 5) действительные положительные(неустойчивый узел) и 6) действительные разных знаков (седло)

 

 

Ниже приведем фазовые портреты, соответствующие различным поведениям систем и состояниям равновесия, более подробно:

  • устойчивый и неустойчивый фокус:

 

 

  • устойчивый и неустойчивый узел:

 

 

  • седло:

 

Напишем мат. модель для рассматриваемой электрической схемы Ia- анодный ток, Eд – напряжение на сетке, относительно катода q-заряд конденсатора. Пусть c, r, l, соответственно емкость конденсатора, сопротивление резистора, индукция катушки, а М- её коэффициент взаимоиндукции с нагрузкой в анодном контуре. Для колебательного контура состоящего из самоиндукции L, емкости C и сопротивления R имеем:

Вид зависимости анодного тока от напряжения на сетке трехэлектродной лампы

Примем, что Ia=α+βE-γE

При этом пренебрегаем самоиндукцией анодном контуре и принимаем, что:

L +R + =M( -

Или

+ + =0

Это уравнение приводится к уравнению Ван дер Поля

-2δ(1-α ) 2 U=0

+λ(X2-1) + ω2 X=0

2δ=

α= +

 

ω2=

При этом предполагается, что δ>0;α >0; ω2 >0 При α=0 и очень малых u уравнение Ван дер Поля превращается в линейный осциллятор с отрицательным трением δ>0 при u2>1/ α

Коэффициент при становится положительным и можно предполагать, что при этом колебания затухают.Таким образом состояние равновесия осциллятора Ван дер Поля не устойчиво и малые колебания нарастают, а очень большие колебания затухают и следовательно, между ними должно быть устойчивое периодическое движение

 

Компьютерное моделирование:

 


 




Поделиться с друзьями:


Дата добавления: 2015-04-24; Просмотров: 953; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.014 сек.