Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

БИЛЕТ № 9. Важнейшие направления и задачи исследования и освоения космического пространства




БИЛЕТ № 8

 

  1. Важнейшие направления и задачи исследования и освоения космического пространства.

Основные проблемы современной астрономии:

Нет решения многих частных проблем космогонии:

· Как сформировалась Луна, как образовались кольца вокруг планет-гигантов, почему Венера вращается очень медленно и в обратном направлении;

В звездной астрономии:

· Нет детальной модели Солнца, способной точно объяснить все его наблюдаемые свойства (в частности, поток нейтрино из ядра).

· Нет детальной физической тео­рии некоторых проявлений звёздной активности. Например, не до конца ясны причины взрыва сверхновых звёзд; не совсем понятно, почему из окрестностей некоторых звёзд вы­брасываются узкие струи газа. Однако особенно загадочны короткие вспыш­ки гамма-излучения, регулярно проис­ходящие в различных направлениях на небе. Не ясно даже, связаны ли они со звёздами или с иными объектами, и на каком расстоянии от нас нахо­дятся эти объекты.

В галактической и внегалактической астрономии:

· Не решена проблема скрытой массы, состоящая в том, что гравита­ционное поле галактик и скоплений галактик в несколько раз сильнее, чем это может обеспечить наблюда­емое вещество. Вероятно, большая часть вещества Вселенной до сих пор скрыта от астрономов;

· Нет единой теории формирова­ния галактик;

· Не решены основные проблемы космологии: нет законченной физи­ческой теории рождения Вселенной и не ясна её судьба в будущем.

Вот некоторые вопросы, на которые астрономы надеются получить ответы в 21 веке:

· Существуют ли у ближайших звёзд планеты земного типа и есть ли у них биосферы (есть ли на них жизнь)?

· Какие процессы способствуют началу формирования звёзд?

· Как образуются и распространя­ются по Галактике биологически важ­ные химические элементы, такие, как углерод, кислород?

· Являются ли чёрные дыры источником энергии активных га­лактик и квазаров?

· Где и когда сформировались га­лактики?

· Будет ли Вселенная расширять­ся вечно, или её расширение сменит­ся коллапсом?

 

  1. Законы Кеплера, их открытие, значение и границы применимости.

 

Три закона движения планет относительно Солнца были выведены эмпирически немецким астрономом Иоганном Кеплером в начале XVII века. Это стало возможным благодаря многолетним наблюдениям датского астронома Тихо Браге.

Первый закон Кеплера. Каждая планета движется по эллипсу, в одном из фокусов которого находится Солнце (e = c/a, где с – расстояние от центра эллипса до его фокуса, а - большая полуось, е – эксцентриситет эллипса. Чем больше е, тем больше эллипс отличается от окружности. Если с = 0 (фокусы совпадают с центром), то е = 0 и эллипс превращается в окружность радиусом а).

Второй закон Кеплера (закон равных площадей). Радиус- вектор планеты за равные промежутки времени описывает равновеликие площади. Другая формулировка этого закона: секториальная скорость планеты постоянна.

Третий закон Кеплера. Квадраты периодов обращений планет вокруг Солнца пропорциональны кубам больших полуосей их эллиптических орбит.

Современная формулировка первого закона дополнена так: в невозмущенном движении орбита движущегося тела есть кривая второго порядка – эллипс, парабола или гипербола.

В отличие от двух первых, третий закон Кеплера применим только к эллиптическим орбитам.

Скорость движения планеты в перигелии: , где Vc = круговая скорость при R = a.

Скорость в афелии: .

Кеплер открыл свои законы эмпирическим путем. Ньютон вывел законы Кеплера из закона всемирного тяготения. Для определения масс небесных тел важное значение имеет обобщение Ньютоном третьего закона Кеплера на любые системы обращающихся тел. В обобщенном виде этот закон обычно формулируется так: квадраты периодов T1 и T2 обращения двух тел вокруг Солнца, помноженные на сумму масс каждого тела (соответственно M1 и M2) и Солнца (Мс), относятся как кубы больших полуосей a1 и a2 их орбит: . При этом взаимодействие между телами M1 и M2 не учитывается. Если пренебречь массами этих тел в сравнении с массой Солнца, то получится формулировка третьего закона, данная самим Кеплером: .Третий закон Кеплера можно также выразить как зависимость между периодом T обращения по орбите тела с массой M и большой полуосью орбиты a: . Третий закон Кеплера можно использовать, чтобы определить массу двойных звезд.

  1. Нанесение на звездную карту объекта (планета, комета и т.п.) по заданным координатам.

 




Поделиться с друзьями:


Дата добавления: 2015-04-24; Просмотров: 3580; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.009 сек.