Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Арифметические основы построения ЭВМ. Позиционные системы счисления. Представление информации в вычислительных системах




Общая классификация вычислительных систем. Классификация вычислительных систем по Флину.

t Общая классификация вычислительных систем.

Вычислительная система – совокупность взаимосвязанных и взаимодействующих процессоров или ЭВМ, периферийного оборудования и программного обеспечения, предназначенная для сбора, хранения, обработки и распределения информации.

ЭВМ классифицируются по:

1. Назначение. Обычно выделяют ЭВМ общего применения и ЭВМ ориентированные на выполнение вполне проблемно-ориентированного класса задач.

2. Производительности. ЭВМ подразделяются по величине производительности.

3. Режим работы:

а) однопрограммные ЭВМ;

б) мультипрограммные ЭВМ (эти ЭВМ должны иметь большую оперативную память, средства управления временем, ввода-вывода, средства позволяющие исключить влияния программ друг на друга);

в) ЭВМ для построения многомашинных и многопроцессорных вычислительных систем (дополнительно к мультипрограммным ЭВМ должны реализовывать функции взаимного обмена между ЭВМ);

г) ЭВМ для работы в системах реального времени (управление техническими объектами, к ним предъявляют требования быстродействия и способность получать массу сигналов от внешних источников).

4. Способ структурной организации.

Для увеличения скорости ЭВМ в ее состав включают несколько процессоров. Различают:

а) Однопроцессорные ЭВМ;

б) Мультипроцессорные ЭВМ (можно также выделить квазипроцессорные ЭВМ), состоят как из однотипных, так и из разнотипных процессоров (неоднородные ЭВМ).

Основная цель мультипроцессирования – получение сверх высокой производительности вычислительных систем. Как правило, такие системы содержат несколько десятков, сотен или тысяч сравнительно простых процессоров, и их число позволяет увеличивать производительность. Принципиально такие системы ориентируются на большой круг задач, которые допускают эффективное распараллеливание вычисление на регулярную структуру (связи между процессорами, как правило, фиксированы). Обычно не каждая задача достаточно хорошо распараллеливается на заданную вычислительную систему.

t Классификация вычислительных систем по Флину.

Классификации выступает классификация архитектур по Майклу Флину. Концепция базируется на понятии потока, под которым понимается последовательность элементов, команд или данных, обрабатываемая процессором, а именно способ организации параллелизма вычислительной системы (множественность). Этот параллелизм определяется как максимальное число одновременных команд или операндов, которые находятся на одинаковой или какой-то определенной стадии выполнения.

Согласно Флину существует 4 разновидности вычислительных систем:

1. SISD (single instruction stream/ single data stream) - одиночный поток команд одиночный поток данных.

Такое структурное построение характерно для классических последовательных машин фон-неймановского типа (PDP-11, VAX). В таких машинах есть только один поток команд, все команды обрабатываются последовательно друг за другом и каждая команда инициирует одну операцию с одним потоком данных. К этому классу относятся машины с конвейерной обработкой.

ОсП - основная память

Линейная организация вычислительного процесса обуславливает весьма низкую эффективность аппаратных средств (велик коэффициент простоя) Для повышения работы такой структуры применяются методы локального параллелизма – совмещенная или опережающая выборка команд, расслоение памяти, но, как правило, это требует дополнительных аппаратных затрат.

2. SIMD (single instruction stream/multiple data stream) - одиночный поток команд множественный поток данных.

В архитектуре подобного рода сохраняется один поток команд, включающий векторные команды. Для данной вычислительной системы обычный поток команд воздействует на несколько процессорных блоков одновременно, которые обрабатывают различные данные по одной команде – элементы вектора. Способ выполнения векторных операций не оговаривается, поэтому обработка элементов вектора может производиться как процессорной матрицей, либо с помощью конвейера. Память в такой вычислительной системе является разделенной.

Первоначально типовыми представителями таких машин были супер-ЭВМ (ILLIAC IV, STARAN, PEPE, ПС-300). Вычислительные системы с такой структурной организацией направлены на решение задач с естественным параллелизмом. В современных ЭВМ это реализовано в Pentium MMX.

3. MISD(multiple instruction stream/single data stream) - множественный поток команд одиночный поток данных.

Эту вычислительную систему обычно рассматривают как результат идей локального параллелизма, иначе их называют конвейерные. Операционная часть вычислительной системы является регулярной и представляет собой цепочку последовательно (линейно) соединенных процессорных блоков, которые образуют конвейер процессора.

Данный конкретный блок является специализированным и выполняет вполне определенную часть команды. Впервые такую вычислительную систему разработал академик Лебедев.

4. MIMD (multiple instruction stream/multiple data stream) -множественный поток команд множественный поток данных – общий случай мультипроцессорной системы.

Этот класс предполагает, что в вычислительной системе есть несколько устройств обработки команд, объединённых в единый комплекс и работающих со своим потоком команд и данных. В общем случае связи между элементарными процессорами являются перестраиваемые.

Такая вычислительная система позволяет повысить не только производительность, но и надежность. Как правило, отказ одного процессора не приводит к выходу из строя всей системы. При такой организации машины возникают сложности взаимодействия управления, при решение одной задачи.

Иногда MIMD называют «моделью коллектива вычислителей».





Поделиться с друзьями:


Дата добавления: 2015-04-25; Просмотров: 1623; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.009 сек.