Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Краткие теоретические сведения. Изучить зависимость сопротивления полупроводника от температуры




Задачи работы

Цель работы

ИЗУЧЕНИЕ ТЕМПЕРАТУРНОЙ ЗАВИСИМОСТИ СОПРОТИВЛЕНИЯ ПОЛУПРОВОДНИКОВ

Лабораторная работа № 9

 

 

Изучить зависимость сопротивления полупроводника от температуры. Научиться определять энергию активации полупроводников в джоулях по зависимости lnr от обратной температуры 1/ T.

 

1. Для исследуемых образцов определить темпе­ратурные коэффициенты сопротивления ТКR.

2. Вычислить энергию активации полупроводников для исследуемых образцов.

 

 

При температуре 0 К и в отсутствие другого энергетического воз­действия все валентные электроны полупроводника на­ходятся на энергетических уровнях ВЗ. В этом состоянии полупро­водник подобен диэлектрику и его проводимость равна нулю. Для переброса электронов из ВЗв ЗПнужна дополнительная энергия для преодоления потенциального барьера в виде 33. При температуре большей 0 К и дальнейшем ее повышении электроны под действием тепловой энергии начнут переходить в ЗП;в результате образуются пары свободных носителей заряда – электроны в ЗП,а дырки – в ВЗ. Этот процесс называют тепловой генерацией свободных носите­лей заряда. В ЗП(благодаря наличию свободных уровней) электроны под действием приложенного электрического поля будут переме­щаться с уровня на уровень, образуя электрический ток. Аналогично в ВЗдырки образуют электрический ток. Одновременно с тепловой генерацией свободных носителей заряда существует и обратный про­цесс, когда свободный электрон возвращается в незаполненную ВЗ.Этот процесс называется рекомбинацией электрона с дыркой. При за­данной температуре между этими процессами осуществляется термо­динамическое равновесие, в результате чего в ЗП устанавливается некоторая, вполне определенная концентрация свободных электро­нов, а в ВЗ – дырок проводимости.

В примесных полупроводниках переходы электронов из ВЗполупроводника на уровни акцепторной примеси и с локальных уровней донорной примеси в ЗПполупроводника осуществляются при более низких затратах энергии, чем переход электронов из ВЗсобст­венного полупроводника в его ЗП,т. е. D W > D W а (D W д). Поэтому элек­тропроводность примесных полупроводников начинает проявляться при более низких температурах, чем электропроводность собственных полупроводников.

Вероятность переходов носителей заряда на свободные уровни энергии и, следовательно, величина электропроводности сильно возрастают с ростом температуры. Зависимость удельной электропро­водности g от температуры в общем виде выражается экспоненци­альной функцией:

 

,

 

где А – постоянная величина; D W – ширина 33, эВ; k – постоянная Больцмана, равная 1,38 10–23 Дж/К; Т –абсолютная температура.

Для полупроводников с одним типом носителей заряда удельная электропроводность g, См/м, определяется тем же выражением:

 

g = n q a, (9.1)

 

где п – концентрация свободных носителей заряда, м–3; q – величи­на заряда каждого из них, Кл; а – их подвижность – отноше­ние дрейфовой скорости V свободных носителей заряда к напряжен­ности Е электрического поля, вызвавшего дрейфовую скорость (а = V/E, [(м/с)/(В/м) = м2/(В с)]). Поскольку подвижность а носителя заряда имеет тот же знак, что и его заряд q,удельная электропровод­ность g, получаемая из формулы (9.1), всегда будет положительной независимо от знака заряда.

В широком интервале температуры концентрация свободных но­сителей заряда п и их подвижность а изменяются по различным зако­нам. Поэтому зависимость удельной электропроводности примесных полупроводников от обратной температуры в широком интервале име­ет сложный характер. В общем виде эта зависимость представлена на рис. 9.1, на котором видны области примесной электропроводности g пр (участок АБ) и собственной gсоб (участок ВГ). При этом g = gсоб + gпр.

 

Рис. 9.1.Температурная зависимость удельной электропроводности g примесного полупровод­ника с различной концентрацией N примеси:

АБи А'Б' участки, характеризующие примесную электропроводность; ВГ участок, характеризую­щий собственную электропроводность; БВи Б'В' области насыщения.

 

Собственную электропроводность и примесную можно опреде лить с помощью следующих уравнений:

 

, (9.2)

 

, (9.3)

 

где A – постоянная величина; k – постоянная Больцмана; Т –абсо­лютная температура. Уравнение (9.3) справедливо, пока не наступит полная иониза­ция примеси.

Таким образом, собственная и примесная электропроводности полупроводниковых материалов с ростом температуры возрастают, т.е. они обладают отрицательным коэффициентом сопротивления.

Прологарифмировав уравнения (9.2) и (9.3), получим:

 

,

 

.

 

Из выражений (9.3, 9.3) получаем выражение для удельного сопротивления полупроводника

 

. (9.4)

 

Прологарифмировав уравнение (9.4), получим:

 

.

 

Полученная зависимость ln R от 1 является линейной, и график зависимости ln R от обратной температуры T –1 будет представлять собой некоторую прямую, угловой коэффициент которой пропорционаленэнергии активации соответствующего участка температурной зависимости. Следовательно, найдя из графика угловой коэффициент, можно вычислить энергию активации.

 

. (9.5)

 

9.4. Используемое оборудование

 

«Модуль питания», модуль «Магнитомягкие материалы и тепловой коэффициент сопротивления / емкости», модуль «Мультиметры», «Из­меритель RLC», минимодуль «ТКС полупроводников», соединительные провод­ники.

 




Поделиться с друзьями:


Дата добавления: 2015-04-25; Просмотров: 577; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.142 сек.