Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Гетерозисные скрещивания 1 страница




Трансгрессивные скрещивания

В результате трансгрессивных скрещиваний проявляется эффект суммирующего действия полимерных генов или так называемая трансгрессия, выражающаяся в устойчивом увеличении (положи­тельная трансгрессия) или уменьшении (отрицательная трансгрес­сия) значения какого-либо полимерно наследующегося признака у отдельных гибридных особей F2 по сравнению с крайними значе­ниями этого признака у родительских форм, т.е. перекрытие нор­мы проявления признаков.

Э. Ромедер и Г. Шенбах (1962) отмечают, что при селекции лес­ных древесных пород можно исходить из гипотезы, что ход роста контролируется многими аддитивно действующими генами. Для выяснения принципа можно принять, что продуктивность по мас­се обусловливается тремя одинаково действующими генами: W1-, W2-, W3- -, при этом их доминантные аллели W1, W2 и W3, обусловли­вают более высокую продуктивность, чем рецессивные w,, w2 и w3 Если в какой-либо популяции для скрещивания отбирают заметно выделяющиеся типы, то надеются, что они несут большее число доминантных генов продуктивности. Найти идеальный тип, обладающий всеми генами продуктивности в гомозиготном состоянии, для таких перекрестно опыляющихся растении, как лесные древесные, задача почти невозможная. Поэтому при выборе исходных форм для скрещиваний ценятся даже те особи, у которых хотя бы часть генов, обусловливающих продуктивность, находится в гомо­зиготном состоянии. Потомство таких скрещиваний будет расщеп­ляться и показывать различную продуктивность. В результате, на­пример, скрещивания двух генотипов W1 W1 W2 w2 W3 w3 и W1 w1 W2 W2 W3 W3 можно получить разное потомство, в том числе и с гено­типом W1 W1 W2 W2 W3 W3, которое превосходит по продуктивности родительские деревья, т.е. обладает трансгрессией. Семенное по­томство F2 этих отдельных особей в случае их самоопыления или переопыления между собой также отличается трансгрессией, по­скольку оно гомозиготно по всем доминантным генам роста. Сово­купность особей F2 отличается повышенным ростом как по сравне­нию с исходными родительскими формами, так и по сравнению с поколением F1. Объяснение явления трансгрессии близко к одной из гипотез гетерозиса — доминирования. Однако последний про­является, как правило, лишь в поколении F1, а в следующих поко­лениях затухает.

 

Цель таких скрещиваний состоит в получении гибридного поса­дочного материала, обладающего гибридной мощностью, жизнеспо­собностью, повышенной продуктивностью или улучшенными ка­чествами у гибридов первого поколения. Гетерозис считается ис­тинным, если наблюдается превосходство гибрида по какому-ни­будь признаку над признаком лучшего родителя, и гипотетическим, если превосходство наблюдается над средним значением признака обоих родителей.

А. Густафссон (1951, цит. по Р. Ригер и А. Михаэлис, 1967) под-, разделяет гетерозис по типу проявления на соматический, репро­дуктивный и приспособительный. Между этими тремя типами су­ществуют переходы. Гетерозис соматический — это более мощное развитие вегетативных органов у гибридных растений; репродуктив­ный — более мощное развитие репродуктивных органов и повышен­ная фертильность, приводящие к формированию высокого урожая семян или плодов; приспособительный, или адаптивный, — повы­шение приспособленности гибридных организмов к изменяющим­ся условиям среды и их конкурентной способности в борьбе за су­ществование.

Для объяснения причин гетерозиса разработано несколько ги­потез. Наиболее распространена гипотеза доминирования, которая основана на представлении о том, что в процессе эволюции гены, благоприятно действующие на организм, становятся доминантны­ми или полудоминантными, в то время как гены, действующие не­благоприятно, становятся рецессивными. Согласно этой гипотезе гетерозис объясняется тремя эффектами действия благоприятных доминантных генов: 1) подавление вредного действия рецессивных аллелей: Аа > аа; 2) аддитивный (суммирующий) эффект неаллель-ных доминантных генов, однонаправленно действующих на опреде­ленные количественные признаки, по которым в большинстве слу­чаев и наблюдается гетерозис: А+В + С>А + В,А + Сили В + С >А, В или С (этот эффект присутствует и в случае трансгрессии, о чем было сказано выше); 3) комплементарное взаимодействие ряда не-аллельных доминантных генов: А <=> В > А + В.

Гипотеза сверхдоминирования объясняет гетерозис аллельным взаимодействием генов в гетерозиготном состоянии, вследствие чего АА < Аа > аа. Предполагается, что одинарная доза гена А благопри­ятнее действует на организм, чем его двойная доза в гомозиготе АА. Кроме того, действие разнонаправленных и независимых аллелей А и а при соединении их в гетерозиготу приобретает характер совмес­тного однонаправленного доминирования; Ах а =* АА', АА < АА'> аа. Одним из доказательств обоснованности теории сверхдоминиро­вания является факт моногибридного гетерозиса, проявляющего­ся при скрещивании двух гомозиготных линий, различия между которыми состоят только в генах одной аллельной пары: AABBCCDD х aaBBCCDD => AaBBCCDD. При этом АА... < Аа... > аа.... Гипотеза генетического баланса объясняет явление гетерозиса суммарным эффектом разнородных генетических процессов, изме­няющих генетический баланс у гетерозиготы в сторону проявления той или иной формы гетерозиса.

Независимо от сущности разных теорий, объясняющих явление гетерозиса, с практической стороны важно иметь в виду, что гете­розис проявляется главным образом в Fv

Н.В. Старова (1980) у древесных пород выделяет три категории гетерозиса: популяционный, групповой и индивидуальный; а в каждой категории — типы гетерозиса: по характеру его проявления (гене­ративный, соматический, адаптивный) и по характеру взаимодей­ствия генов (доминирование, сверхдоминирование, аддитивные и комплементарные эффекты). Поскольку описание типов было дано ранее, остановимся на характеристике категорий.

Популяционный гетерозис может возникать в результате длитель­ной адаптивной эволюции в панмиктических естественных популяциях в результате удачных рекомбинаций и уравновешивающего естественного отбора, благоприятствующего гетерозиготам. Он мо­жет быть получен при географически отдаленной межпопуляционной гибридизации или при гибридизации различных природных изолятов в результате рекомбинации генов. В бывшем СССР были начаты работы по созданию плантаций сосны обыкновенной (И.Н. Патлай, П.И. Молотков), лиственницы (Ф.Д. Авров), березы (А.Я. Любавская) и других пород с использованием межпопуляционных скрещиваний географически отдаленных экотипов и изолятов.

Групповой гетерозис может быть получен при искусственной гиб­ридизации родительских форм с высокой специфической комби­национной способностью, когда гибридная семья в целом по сред­ним и максимальным показателям превосходит обе родительские формы. Примеры такого гетерозиса встречаются у тополей, ив и других пород.

Индивидуальный гетерозис наблюдается при межвидовых или гео­графически отдаленных скрещиваниях, а также при скрещивании растений с различным уровнем плоидности. В этом случае не гиб­ридные семьи в целом, а лишь отдельные экземпляры превосходят родительские формы (С.З. Курдиани). Индивидуальный гетерозис можно использовать в клоновой селекции при вегетативном и апомиктическом размножении гетерозисных форм для создания высо­копродуктивных плантационных насаждений. Наиболее часто этот вид гетерозиса применяют при гибридизации тополей, ив, орехов рода Juglans L.

 

3.2. Методы гибридизации

Методы гибридизации зависят от биологических особенностей вида, характера исходного материала, требований к будущему сор­ту и др. Выделяют простые и сложные скрещивания, кроме того, существует ряд методов, сочетающих гибридизацию с другими под­ходами хозяйственного улучшения растений (инбридинг, полипло­идия, мутагенез и др.).

Простые скрещивания. Скрещивания между двумя родительски­ми формами, производимые однократно, называют простыми:

 

При простых скрещиваниях гибриды получаются от объединения наследственности двух родителей. Формообразовательный процесс в гибридных популяциях от простых скрещиваний идет на основе перераспределения наследственного материала, привнесенного в рав­ном количестве одной парой родителей, поэтому простые скрещивания называют также парными. Разновидностью парных скрещива­ний являются взаимные или реципрокные, когда в качестве материн­ского растения выступает растение, бывшее ранее отцовским:

Реципрокные скрещивания применяются:

а) когда наследование какого-либо важного хозяйственно-биологического признака (на­пример, зимостойкости, роста и др.) связано с цитоплазмой; гиб­риды наследуют это свойство сильнее в том случае, если носитель ценного признака берется в виде материнского растения;

б) когда завязываемость семян зависит от того, в качестве материнской или отцовской берется та или иная форма.

Сложные скрещивания. В сложных скрещиваниях участвуют бо­лее двух родительских форм, или гибридное потомство повторно скрещивается с одним из родителей. Они делятся на ступенчатые и возвратные. Ступенчатые скрещивания применяются, когда необ­ходимо соединить в гибридном потомстве наследственность не­скольких родительских форм. Их можно представить в виде следу­ющих простейших формул:

 

1)[(АхВ)хС]х D; 2)[(AxB)x(Cx D)] х Е.

 

В первом случае гибрид, полученный от скрещивания двух родительских форм А и В, дополнительно скрещивается с формой С, а затем с формой D; в целом здесь объединяется наследственность четырех родительских форм. Во втором случае сначала скрещива­ются попарно формы А и В, С и D, а их гибридное потомство скрещивается между собой и с формой Е; в целом здесь объединяется наследственность пяти родительских форм. В обоих случаях скре­щивания осуществляются последовательно, ступенчато.

Возвратные скрещивания — это такие скрещивания, при кото­рых гибрид повторно скрещивается с одним из родителей. Их при­меняют в двух случаях: 1) для преодоления бесплодия гибридов первого поколения при отдаленной гибридизации: (Ах В) х В; 2) для усиления в гибридном потомстве желаемых свойств одного из ро­дителей. В этом случае возвратные скрещивания называют насы­щающими. Чаще всего их используют при выведении сортов, устой­чивых к болезням или неблагоприятным абиотическим факторам среды. Лучший высокопродуктивный, но неустойчивый к действию какого - либо неблагоприятного фактора сорт берется в качестве отцовской формы, а сорт, обладающий устойчивостью к нему, — в качестве материнской. Например, скрещиваются устойчивый сорт А с быстрорастущим, но мало устойчивым сортом В, тогда мы можем иметь следующую последовательность возвратных скрещива­ний, каждое из которых называется беккроссом (табл. 3.2). В резуль­тате первого беккросса количество отцовского ядерного материала увеличивается до 75%, после пятого — оно равняется 99,2%, т.е. происходит почти полное поглощение материнской наследствен­ности отцовской, поэтому такие насыщающие скрещивания назы­ваются поглотительными.

Использование в гибридизации явления инбридинга позволило разработать инцухт-гетерозисный метод получения гетерозисных растений. При этом методе сначала получают инцухт-линии или инбред -линии (самоопыленные линии), представляющие собой потом­ство одного перекрестно опыляющегося растения, полученное в результате принудительного самоопыления. Исходное растение, которое принудительно подвергли самоопылению, обозначается символом 1о, первое его инбредное потомство — символом 11, вто­рое — символом 1 2 и т.д. Затем отбирают инбредные линии, облада­ющие высокой комбинационной способностью, и скрещивают их между собой. В результате получают гибриды, обладающие повы­шенным гетерозисом. Такие гибриды называют инцухт-гетерозисными. Прекрасные результаты применения этого метода получены на сельскохозяйственных растениях, в частности у кукурузы. О его применимости для лесных пород указывал еще А.И. Колесников, а в более позднее время — Э. Ромедер и Г. Шенбах (1962).

 

Таблица 3.2

Схема применения насыщающих скрещиваний в селекции на устойчивость (по Г.В. Гуляеву, А.П. Дубинину, 1974)

 

Номер беккросса Последовательность скрещиваний Процент насыщения устойчивого сорта свойствами лучшего высокопродуктивного сорта
  А х В = F1;  
  F1*B = F2  
  F2*B = F3 87,5
  F3*B=F4 93,7
  F4 *B = F5 98,4
  F5*B = F6 99,2

Необходимо отметить, что в зависимости от способа размноже­ния те или иные методы гибридизации и селекции дают более или менее важные практические результаты.

Так, для самоопылителей наибольшее распространение получи­ли методы комбинационной селекции, как простые, так и сложные, особенно метод ступенчатой и отдаленной гибридизации. Среди перспективных методов можно отметить: использование принци­пов генетически регулируемого гетерозиса; получение индуциро­ванных мутаций при применении радиации и химических мутаге­нов и использование искусственно получаемых аллополиплоидов (Н.П. Дубинин, Я.Л. Глембоцкий, 1967).

В селекции перекрестников сельскохозяйственных культур исто­рически прослеживается переход от массового отбора к семействен­ному отбору и затем к получению самоопыленных линий и исполь­зованию гетерозисных гибридов. Здесь, как и при скрещивании са­моопылителей, наблюдаются простые и сложные скрещивания. Новыми методами в этом случае являются скрещивание инцухт-ли-ний (межлинейные гибриды) или скрещивания инцухт-линий на сорт (сортолинейные гибриды), при которых проявляется гетерозис.

В селекции вегетативно размножаемых растений наибольшее значение приобрели такие методы селекции, как отдаленная гиб­ридизация, экспериментальное получение полиплоидов и искусст­венный мутагенез. При всех этих методах важно получить хотя бы одно растение с улучшенными хозяйственными признаками, кото­рое в последующем можно размножить вегетативным путем. Успех здесь зависит в основном от выбора исходного материала и техни­ческого осуществления методов.

3.3. Техника гибридизации

 

Проведение контролируемых скрещиваний лесных деревьев — очень дорогое и долговременное мероприятие. Поэтому прежде чем его проводить, составляют схему (план) скрещиваний, при разра­ботке которой стараются сделать так, чтобы можно было одновре­менно достичь нескольких целей. Различают самоопыление, систе­мы скрещиваний с неизвестными отцами (свободное опыление и поликросс) и системы скрещивания с известными отцами. Планы скрещиваний составляют, собственно говоря, только для последней группы скрещиваний. Различают полную схему диаллельных скре­щиваний, модифицированную схему диаллельных скрещиваний, мистичные схемы диаллельных скрещиваний, факториальную схе­му скрещиваний, простые скрещивания (В. Zobel, J. Talbert, 1984, И. Ditlevsen, 1985).

Полная схема диаллельных скрещиваний (рис. 3.1) считается од­ной из лучших, поскольку включает все возможные варианты скрещивания и дает почти полную информацию о генетических харак­теристиках изучаемых клонов. Схема может давать информацию об ОКС и СКС и их дисперсиях. Материал также создает лучшую стар­товую точку для отбора наилучших индивидуумов или пар клонов, подходящих для создания биклоновых плантаций. Схема, к сожа­лению, очень трудна для осуществления, особенно с экономичес­кой точки зрения. Например, для реализации полной диаллельной схемы для 20 клонов надо провести 400 контролируемых скрещива­ний или 380, если исключить самоопыление. Поэтому в практике используют другие схемы (рис. 3.2-3.4).

Модифицированная схема диаллельных скрещиваний представ­ляет собой ограниченную диаллельную схему скрещиваний. В этом случае из полной схемы исключаются реципрокные скрещивания и самоопыления (рис. 3.2), что значительно удешевляет реализацию схемы. Эта схема дает примерно такую же информацию, как и пол­ная схема диаллельных скрещиваний, но ограничения, допущен­ные в схеме, не гарантируют такой же точности в опытах при опре­делении параметров.

Частичная схема диаллельных скрещиваний может отличаться от полной и модифицированной схемы диаллельных скрещиваний настолько, что один клон не скрещивается со всеми другими кло­нами (рис. 3.3). Схема менее эффективна, чем схемы полных и мо­дифицированных диаллельных скрещиваний. Однако это компенсируется тем, что большое количество потомства может быть испы­тано при довольно низких затратах. К сожалению, отсутствие оце­нок, которые нельзя получить в частичных схемах, значительно ус­ложняют расчеты.

 

 

Матери Отцы
                   
  X X X X X X X X X X
  X X X X X X X X X X
  X X X X X X X X X X
  X X X X X X X X X X
  X X X X X X X X X X
  X X X X X X X X X X
  X X X X X X X X X X
  X X X X X X X X X X
  X X X X X X X X X X
  X X X X X X X X X X

 

Рис. 3.1. Полная схема диаллельных скрещиваний: X — самоопыление

 

Матери Отцы
                 
  X                
  X X              
  X X X            
  X X X X          
  X X X X X        
  X X X X X X      
  X X X X X X X    
  X X X X X X X X  
  X X X X X X X X X

 

Рис. 3.2. Модифицированная схема диаллельных скрещиваний

 

Матери Отцы
                     
          X X          
            X X        
              X X      
                X X    
                  X X  
                    X X
  X                   X
  X X                  
    X X                
      X X              
        X X            

 

Рис. 3.3. Частичная диаллельная схема Брауна

 

Факториальная схема скрещивания отличается тем, что в ней все материнские клоны скрещиваются с одними и теми же отцовскими клонами (рис. 3.4). Часто это может быть небольшое число отцовс­ких растений, называемых также общими тестерами. Данная схема может также рассматриваться как разновидность полной диаллельной схемы, включающей все комбинации одной группы матерей и другой группы отцов. Схема очень распространена в США под на­званием Северо-Каролинская II. Нормально четыре различных отца используются для схемы скрещивания, но, как правило, число от­цов в схеме зависит от значения специфических комбинационных эффектов. Так как схема часто включает очень немногое количе­ство отцов и одни и те же клоны не являются одновременно мате­ринскими и отцовскими, то трудно сравнить ОКС каждого родите­ля. Трудно также отобрать потомство для следующего поколения семенных плантаций, особенно если используется только несколь­ко отцов, являющихся часто уже родственными друг другу. Преиму­щество этой схемы в простоте ее выполнения и относительной де­шевизне; в то же время анализ результатов легче.

 

Матери Отцы
       
  X X X X
  X X X X "
  X X X X
  X X X X
  X X X X
  X X X X
  X X X X
  X X X X

 

Рис. 3.4. Факториальная схема скрещивания

 

Простое скрещивание пар характеризуется тем, что в этом слу­чае каждый клон включен только один раз — как мать или как отец. Эта схема особенно хороша, если целью является создание популя­ции для отбора особей для новых семенных плантаций или для ис­пользования в дальнейшей селекционной работе. Другим преиму­ществом использования простого скрещивания пар является то, что большое количество клонов может быть испытано при одинаковой схеме, и обычно очень дешево может быть получено потомство на базе контролируемых скрещиваний. С другой стороны, возможно­сти оценки ОКС и дисперсии ОКС и СКС обычно не очень хоро­ши. Выбор соответствующей схемы зависит от цели контролируемых скрещивании. В табл. 3.3 суммированы достоинства и недо­статки названных схем.

При планировании скрещиваний следует учитывать ряд особенно­стей исходного материала, отмеченных С.С. Пятницким (1961):

• для получения крепкого потомства необходимо отбирать для скрещивания здоровые неистощенные экземпляры;

Таблица 3.3

Сравнение схем скрещиваний

(по В. Ditlevsen, 1985)

Система скрещивания Оценка ОКС Отбор плюсовых деревьев Затраты Оценка дисперсии ОКС и СКС
Свободное опы­ление Неплохая Возможен, но не эффективен Низкие Затруднена
Поликросс Очень хорошая Очень незначи­телен и только, если дисперсия близкородствен­ного скрещива­ния ослаблена Очень низкие Хорошая оценка дисперсии ОКС
Полная диаллельная Превос­ходная Превосходный Очень высокие Превосходная
Модифицирован­ная диаллельная Превос­ходная Превосходный Очень высокие Очень хорошая
Частичная диал­лельная Хорошая Очень хороший Достаточ­ные Хорошая оценка дисперсии ОКС. Дисперсия СКС может быть опре­делена, но это трудно с точки зре­ния обработки данных
Факториальная Хорошая Только в немно­гих случаях и тогда, когда дисперсия близ­кородственного скрещивания низкая Достаточ­ные Хорошая
Простое скрещи-h.niHc пар Плохая Хороший Очень низкие Плохая

 

• у молодых растений выход гибридных семян и плодов выше, чем у старых;

• при скрещивании с местными видами полученные гибриды больше уклоняются в их сторону;

• при скрещивании культурной формы с дикой уклонение идет в сторону последней;

• при скрещиваниях материалов из географически отдаленных местностей или экологически неоднородных условий местопроиз­растания больше вероятности получить хозяйственно ценные гиб­риды;




Поделиться с друзьями:


Дата добавления: 2015-05-06; Просмотров: 1255; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.063 сек.