Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Основные параметры полевого транзистора




Области применения полевых транзисторов

Значительная часть производимых в настоящий момент полевых транзисторов входит в состав 0%9A%D0%9C%D0%9E%D0%9F"КМОП-структур, которые строятся из полевых транзисторов с каналами разного (p- и n-) типа проводимости и широко используются в цифровых и аналоговых 0%98%D0%BD%D1%82%D0%B5%D0%B3%D1%80%D0%B0%D0%BB%D1%8C%D0%BD%D0%B0%D1%8F_%D1%81%D1%85%D0%B5%D0%BC%D0%B0"интегральных схемах.

За счёт того, что полевые транзисторы управляются полем (величиной напряжения приложенного к затвору), а не током, протекающим через базу (как в биполярных транзисторах), полевые транзисторы потребляют значительно меньше энергии, что особенно актуально в схемах ждущих и следящих устройств, а также в схемах малого потребления и энергосбережения (реализация спящих режимов).

Выдающиеся примеры устройств, построенных на полевых транзисторах, — наручные кварцевые часы и пульт дистанционного управления для телевизора. За счёт применения КМОП-структур эти устройства могут работать до нескольких лет, потому что практически не потребляют энергии.

Грандиозными темпами развиваются области применения мощных полевых транзисторов. Их применение в радиопередающих устройствах позволяет получить повышенную чистоту спектра излучаемых радиосигналов, уменьшить уровень помех и повысить надёжность радиопередатчиков. В силовой электронике ключевые мощные полевые транзисторы успешно заменяют и вытесняют мощные биполярные транзисторы. В силовых преобразователях они позволяют на 1-2 порядка повысить частоту преобразования и резко уменьшить габариты и массу энергетических преобразователей. В устройствах большой мощности используются биполярные транзисторы с полевым управлением (IGBT) успешно вытесняющие 0%A2%D0%B8%D1%80%D0%B8%D1%81%D1%82%D0%BE%D1%80"тиристоры. В усилителях мощности звуковых частот высшего класса HiFi и HiEnd мощные полевые транзисторы успешно заменяют мощные электронные лампы, так как обладают малыми нелинейными и динамическими искажениями.

Ток насыщения Iс0 в цепи стока транзистора, включённого по схеме с общим истоком, при затворе накоротко замкнутым с истоком (т. е. при Uз.и=0) - характерен лишь для полевых транзисторов с управляющим p-n-переходом.

Ток стока в рабочей точке можно определить по следующей формуле 7.html" \l "lit"[2]:

Iс = Iс0(1-Uз.и/Uотс)2 (1)

где Uотс - напряжение отсечки.

Уравнение (1) является приближенным для характеристики передачи любого полевого транзистора (особенно с малыми напряжениями отсечки).

Напряжение отсечки Uотс - один из основных параметров, характеризующих полевой транзистор. При напряжении на затворе, численно равном напряжению отсечки, практически полностью перекрывается канал полевого транзистора, и ток стока при этом стремится к нулю.

Измерение истинного значения напряжения отсечки (при полном перекрытии канала) произвести довольно трудно, так как при этом приходится иметь дело с чрезвычайно малыми токами стока, к тому же зависящими от сопротивления изоляции. В справочных данных на полевые транзисторы всегда указывается, при каком значении тока стока произведены измерения напряжения отсечки. Так, например, для транзисторов КП102 напряжения Uотс получены при токе стока 20 мкА, а у транзистора КП103 - при токе стока 10 мкА.

Крутизна проходной характеристики. Входное сопротивление полевых транзисторов со стороны управляющего электрода составляет 107-109 Ом для транзисторов с p-n-переходом. Так как входные токи полевых транзисторов чрезвычайно малы, то управление током в выходной цепи осуществляется входным напряжением. Поэтому усилительные свойства полевого транзистора, как и электронных ламп, целесообразно характеризовать крутизной проходной характеристики.

Крутизна полевых транзисторов

Максимальное значение крутизны характеристики Sмакс достигается при Uз.и=0. При этом численное значение Sмакс равно проводимости канала полевого транзистора при нулевых смещениях на его электродах.

Крутизна характеристики полевых транзисторов на 1-2 порядка меньше, чем у биполярных транзисторов, поэтому при малых сопротивлениях нагрузки коэффициент усиления каскада на полевом транзисторе меньше коэффициента усиления аналогичного каскада на биполярном транзисторе.

В большинстве случаев крутизну характеристики полевых транзисторов считают частотно-независимым параметром. Поэтому быстродействие электронных схем на полевых транзисторах ограничено в основном паразитными параметрами схемы.

Выражение для крутизны характеристики в рабочей точке ПТ получим, используя (1):

где Uз.и - напряжение затвор-исток, при котором вычисляется S;

Соотношение (3) позволяет по двум известным параметрам рассчитать третий.

Пробивное напряжение. Механизм пробоя полевого транзистора можно объяснить возникновением лавинного процесса в переходе затвор - канал. Обратное напряжение диода затвор - канал изменяется вдоль длины затвора, достигая максимального значения у стокового конца канала. Именно здесь происходит пробой полевого транзистора. Если выводы стока и истока поменять местами, то пробивное напряжение почти не изменится. Например, у транзистора КП102 пробой наступает при суммарном напряжении между затвором и стоком, равном 30 В. Это напряжение является минимальным; фактически напряжение пробоя составляет в среднем около 55 В, а у отдельных экземпляров достигает 120 В 7.html" \l "lit"[7].

Пробой не приводит к выходу из строя ПТ с управляющим р-n-переходом, если при этом рассеиваемая мощность не превышает допустимой. После пробоя в нормальном рабочем режиме эти транзисторы восстанавливают свою работоспособность. Это свойство транзисторов с p-n-переходом даёт им известное преимущество перед МОП-транзисторами, у которых пробой однозначно приводит к выходу прибора из строя.

Однако необходимо оговориться, что и для ПТ с р-n-переходом пробой не всегда безвреден. Степень его влияния на параметры транзистора определяется значением и продолжительностью действия тока, протекающего при этом через затвор. Так, в результате пробоя может увеличиться ток утечки затвора в нормальном режиме 7.html" \l "lit"[7].

Динамическое сопротивление канала rк определяется выражением

Это сопротивление при Uс.и = 0 и произвольном смещении Uз.и можно выразить через параметры транзистора 7.html" \l "lit"[2]:

(4)

При малом напряжении сток-исток вблизи начала координат ПТ ведёт себя как переменное омическое сопротивление, зависящее от напряжения на затворе. Это остаётся справедливым даже в случае изменения полярности напряжения стока (см. рис. 4); необходимо только, чтобы напряжение на затворе было больше, чем на стоке [5].

 

 

 

 

Зависимости сопротивления канала ПТ от напряжения на затворе

Минимальное значение сопротивления канала rк0 наблюдается при Uз.и = 0: при увеличении обратного напряжения на затворе сопротивление канала нелинейно увеличивается (см. рис. 10). Значение rк0 определяется по стоковой характеристике транзистора как тангенс угла наклона касательной к кривой Iс=f(Uс) при Uз.и = 0 в точке Uс.и=0.

Для приближенных расчётов имеет место простое соотношение

rк0 ≈ 1/Sмакс (5)

 

 

Тири́стор — 0%9F%D0%BE%D0%BB%D1%83%D0%BF%D1%80%D0%BE%D0%B2%D0%BE%D0%B4%D0%BD%D0%B8%D0%BA%D0%BE%D0%B2%D1%8B%D0%B5_%D0%BF%D1%80%D0%B8%D0%B1%D0%BE%D1%80%D1%8B"полупроводниковый прибор, выполненный на основе монокристалла 0%9F%D0%BE%D0%BB%D1%83%D0%BF%D1%80%D0%BE%D0%B2%D0%BE%D0%B4%D0%BD%D0%B8%D0%BA"полупроводника с тремя или более 0%BF%D0%B5%D1%80%D0%B5%D1%85%D0%BE%D0%B4"p-n-переходами и имеющий два устойчивых состояния: закрытое состояние, то есть состояние низкой проводимости, и открытое состояние, то есть состояние высокой проводимости.

Тиристор можно рассматривать как электронный выключатель (ключ). Основное применение тиристоров — управление мощной нагрузкой с помощью слабых сигналов, а также переключающие устройства. Существуют различные виды тиристоров, которые подразделяются, главным образом, по способу управления и по проводимости. Различие по проводимости означает, что бывают тиристоры, проводящие ток в одном направлении (например тринистор, изображённый на рисунке) и в двух направлениях (например, 0%A1%D0%B8%D0%BC%D0%B8%D1%81%D1%82%D0%BE%D1%80"симисторы, симметричные динисторы).

Тиристор имеет нелинейную вольт-амперную характеристику (0%92%D0%BE%D0%BB%D1%8C%D1%82-%D0%B0%D0%BC%D0%BF%D0%B5%D1%80%D0%BD%D0%B0%D1%8F_%D1%85%D0%B0%D1%80%D0%B0%D0%BA%D1%82%D0%B5%D1%80%D0%B8%D1%81%D1%82%D0%B8%D0%BA%D0%B0"ВАХ) с участком 0%9E%D1%82%D1%80%D0%B8%D1%86%D0%B0%D1%82%D0%B5%D0%BB%D1%8C%D0%BD%D0%BE%D0%B5_%D0%B4%D0%B8%D1%84%D1%84%D0%B5%D1%80%D0%B5%D0%BD%D1%86%D0%B8%D0%B0%D0%BB%D1%8C%D0%BD%D0%BE%D0%B5_%D1%81%D0%BE%D0%BF%D1%80%D0%BE%D1%82%D0%B8%D0%B2%D0%BB%D0%B5%D0%BD%D0%B8%D0%B5"отрицательного дифференциального сопротивления. По сравнению, например, с транзисторными ключами, управление тиристором имеет некоторые особенности. Переход тиристора из одного состояния в другое в электрической цепи происходит скачком (лавинообразно) и осуществляется внешним воздействием на прибор: либо напряжением (током), либо светом (для фототиристора). После перехода тиристора в открытое состояние он остаётся в этом состоянии даже после прекращения управляющего сигнала, если протекающий через тиристор ток превышает некоторую величину, называемую током удержания.




Поделиться с друзьями:


Дата добавления: 2015-05-06; Просмотров: 623; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.02 сек.