Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Разновидности полупроводниковых диодов, их принципиальные отличия




ВАХ реального полупроводникового диода

Вольт-амперная характеристика (ВАХ) полупроводникового диода

Что такое идеальный диод?

Основная задача обычного выпрямительного диода – проводить электрический ток в одном направлении, и не пропускать его в обратном. Следовательно, идеальный диод должен быть очень хорошим проводником с нулевым сопротивлением при прямом подключении напряжения (плюс - к аноду, минус - к катоду), и абсолютным изолятором с бесконечным сопротивлением при обратном.

Вот так это выглядит на графике:

Такая модель диода используется в случаях, когда важна только логическая функция прибора. Например, в цифровой электронике.

Однако на практике, в силу своей полупроводниковой структуры, настоящий диод обладает рядом недостатков и ограничений по сравнению с идеальным диодом. Это можно увидеть на графике, приведенном ниже.

В зависимости от области применения полупроводниковые диоды делят на следующие основные группы:

  • выпрямительные,
  • универсальные,
  • импульсные,
  • сверхвысокочастотные,
  • стабилитроны,
  • варикапы,
  • туннельные,
  • обращенные,
  • фотодиоды,
  • светоизлучающие диоды,
  • генераторы шума,
  • магнитодиоды.

По конструктивному исполнению полупроводниковые диоды делятся на плоскостные и точечные, а по технологии изготовления на сплавные, диффузионные и эпитаксиальные (следует понимать, что существует множество разных подвидов этих технологий). В плоскостных диодах электрический переход имеет линейные размеры значительно большие толщины самого перехода. К точечным относят диоды, у которых размеры электрического перехода, определяющие его площадь, меньше толщины области объемного заряда. Такой диод образуется, например, в месте контакта небольшой пластины полупроводника и острия металлической пружины (точечно-контактные диоды).

Точечные диоды имеют малую емкость перехода (обычно менее 1 пФ) и поэтому применяются на любых частотах, вплоть до СВЧ. Но они могут пропускать токи не более единиц или десятков миллиампер. Плоскостные диоды в зависимости от площади перехода обладают емкостью в десятки пикофарад и, соответственно, их применяют на частотах не выше десятков килогерц, а допустимый ток бывает до сотен ампер. На рисунке представлена конструкция точечных и плоскостных диодов.

Выпрямительные диоды. Как видно из названия их основное предназначение - выпрямление переменного тока (напряжения).

Выпрямительные точечные диоды широко применяются на высоких частотах, иногда на СВЧ, хотя успешно работают на низких частотах. Эти диоды работают во многих устройствах, поэтому их называют еще универсальными. Естественно, для таких диодов характерен небольшой прямой ток, в отличие от плоскостных (всего до сотен миллиампер).

Импульсные диоды. При работе диода в импульсном режиме для него характерны некоторые особенности. Ну, например, диод включен в цепь импульсного напряжения с длительностью импульсов в несколько микросекунд. Положительные импульсы проходят через диод, при этом прямым сопротивлением диода мы пренебрегаем. Когда полярность напряжения на диоде меняется на противоположную, диод закрывается не сразу, а в течении некоторого времени, за которое через переход протекает обратный ток, значительно превосходящий по амплитуде обратный ток в установившемся режиме. Основной причиной возникновения обратного тока является разряд диффузионной емкости, т. е. рассасывание зарядов, образованных подвижными носителями в p- и n-областях. Поскольку концентрации примесей в этих областях весьма различны, то практически импульс обратного тока создается рассасыванием заряда, накопленного в базе, т. е. в области с относительно малой проводимостью.

Стабилитрон работает при обратном напряжении.

Стабисторы. Это полупроводниковые диоды, аналоги стабилитронов, но в отличие от последних у стабисторов используется не обратное напряжение, а прямое. Значение этого напряжение мало зависит от тока в некоторых пределах. Напряжение стабилизации стабисторов обычно не более 2 вольт, чаще всего 0,7 В при токе до нескольких десятков мА. Особенность стабисторов - отрицательный температурный коэффициент напряжения, т. е. напряжение стабилизации с повышением температуры уменьшается. Поэтому стабисторы применяют также в качестве термокомпенсирующих элементов, соединяя их с обычными стабилитронами, имеющими положительный ТКН.

Варикапы. Эти плоскостные диоды, иначе называемые параметрическими, работают при обратном напряжении, от которого зависит барьерная емкость. Другими словами, варикап - это кондер переменной емкости, управляемый не механически, а электрически.




Поделиться с друзьями:


Дата добавления: 2015-05-06; Просмотров: 1107; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.013 сек.