Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Варикап




 

2.1 Теоретические сведения

 

2.1.1 Принцип работы и вольт-фарадная характеристика

 

Варикап предназначен для использования в качестве электрически управляемой емкости. Принцип работы варикапа основан на использовании зависимости емкости электрического перехода от напряжения. Электрический переход варикапов имеет сложную структуру типа р-n-n+, р-i-n, МДП и др.

 

 

Рисунок 2.1 – Распределение концентрации примеси (а) и вольт-фарадные характеристики (б) для сплавных(1), диффузионных (2) и планарно-эпитаксиаль­ных (3) варикапов

 

Варикапы применяют в устройствах управления частотой колебательного контура, в параметрических схемах усиления, деления и умножения частоты, в схемах частотной модуляции, управляемых фазовращателях и др. В этих устройствах предпочтение отдается варикапам на основе барьерной емкости р-n -перехода. Чаще всего желательно, чтобы емкость варикапа менялась в значительных пределах. Для этого выполняются два условия – p-n переход варикапа делается толстым (что повышает максимально допустимое рабочее напряжение) и резким (что делает наибольшим влияние напряжения на емкость). Поэтому варикапы выполняются на основе резких невырожденных p-n переходов.

При подаче на варикапы прямого напряжения к барьерной емкости p-n перехода добавляется так называемая диффузионная емкость. Однако в этом случае малое сопротивление p-n перехода шунтирует обе емкости и это катастрофически снижает добротность варикапа. Поэтому прямое включение варикапа не используется.

Как правило, варикапы изготавливаются либо в виде дискретных изделий, либо сборки из четырех приборов.

Исходным материалом для варикапов является кремний, а в последнее время – арсенид галлия. В сплавных варикапах электрический переход резкий, распределение примесей вдоль перехода по координате х, отсчитываемой от его металлургической границы, приблизительно равномерное для р+ и n -области, в диффузионных – плавное (линии 1 и 2 на рис. 2.1, а). Этим распределениям соответствуют зависимости Св = f(U) – вольт-фарадные характеристики (ВФХ) варикапа (кривые 1 и 2 на рис. 2.1, б). Эти ВФХ аппроксимируются выражением

 

, (2.1)

 

где φ0 – высота потенциального барьера p-n -перехода; т — коэффициент нелинейности ВФХ (т=0,5 для сплавных и т=0,3 для диффузионных); Св0 – емкость ва-рикапа при внешнем напряжении Uобр= 0.

Для получения более резкой зависимости Св = f (Uобр) в эпитаксиальных варикапах используются переходы со структурой р+-n-n+ и обратным градиентом распределения примесей в базе (кривые 3 на рис. 2.1, а и б).

 

2.1.2 Параметры

 

Электрическими параметрами варикапа являются:

Снноминальная емкость, т.е. емкость между выводами варикапа при номинальном напряжении сме-щения;

Смаксмаксимальная емкость – емкость варикапа при задан-ном минимальном напряжении смещения;

Сминминимальная ем-кость – емкость варикапа при заданном максимальном напряжении смещения;

Кс = Cмаксминкоэффициент перекрытия по емкости;

ТК C =dC/(CнdT)температурный коэффициент емкости – относи-тельное изменение емкости варикапа при изменении температуры окру-жающей среды на 1 К в рабочем интервале температур при заданном напряжении смещения;

Qвноминальная добротность варикапа – отношение реактивного сопротивления варикапа к полному сопротивле-нию потерь при номинальном напряжении смещения на заданной ча-стоте;

ТК Qв =dQв/(QвdT) – температурный коэффициент добротно-сти – относительное изменение Qв при изменении температуры окру-жающей среды на 1 К в заданном интервале температур.

К параметрам эксплуатационных режимов относятся:

Pв.максмаксимальная допустимая мощ ность – максимальное значение мощности, рассеивае-мой на варикапе, при которой обеспечивается заданная надежность при его длительной работе;

Uобр.макс максимально допустимое на-пряжение – максимальное мгновенное значение переменного напряже-ния на варикапе;

RТобщее тепловое сопротивление.

В справочных данных указывают: fмакcfминчастотный диапазон работы варикапа, определяемый граничными частотами, на которых добротность варикапа Qв = 1. При этом граничные частоты варикапа

 

fмакс=1/(2πCбарrs); fмин=1/(2πСбарRy), (2.2)

 

где rs=rЭ+rБ – сопротивление потерь в эмиттерной и базовой областях варикапа; Rу – сопротивление утечки перехода варикапа.

Параметры варикапов в сборке имеют очень близкие значения.

 

2.1.3 Эквивалентная схема

 

Малосигнальная эквивалентная схема варикапа приве-дена на рис. 2.2,а. В схеме Lв – элементы индуктивности выводов прибора (порядка нескольких микрогенри); кон-денсатор Скорп 1,5 пФ учитывает емкость корпуса; резис-тор rs=rЭ+rБ моделирует омическое сопротивление ба-зы rБ с сопротивлением омического контакта и сопротив-ленце эмиттерной области rЭ с аналогичным контактом; резисторы rдиф, Ry учитывают дифференциальное сопро-тивление и сопротивление утечки перехода; конденсатор Спербар) – эквивалент емкости перехода (барьерной ем-кости). На, частотах до нескольких десятков мегагерц параметрами схемы Lв и Cкорп можно пренебречь ввиду их малости и ограничиться упрощенной схемой (на рисунке об-ведена штриховой линией). Сопротивление перехода при обратном напряжении на варикапе определяется сопротивлением утечки Ry. Типовое значение Rу > 1 МОм.

 

 

 

Рисунок 2.2 – Малосигнальная эквивалентная схема варикапа

 

Последовательное сопротивление rs определяет добротность варикапа Qв на высоких частотах. Добротность мож-но рассчитать из его упрощенной эквивалентной схемы при -условии что Ry rs. На высоких частотах добротность

 

. (2.3)

 

Для повышения добротности необходимо уменьшать сопротивление базы, что достигается введением в структу-ру варикапа n+ - области, снижать сопротивление омическо-го контакта путем увеличения концентрации примеси в n+ - области базы и подбором металла омических кон-тактов.

На низких частотах, для которых ωCбарrs 1 эквива-лентная схема варикапа представляет параллельное соеди-нение Ry и Сбар (рис. 2.2, б). Добротность варикапа при этом Qв.н.ч. ωСбарRу. С повышением частоты ω добротность возрастает. На высоких частотах ωCбарrs 1и добротность варикапа Qв.в.ч. = 1/(ωСбарrs). С ростом частоты добротность падает. Эквивалентная схема варикапа для этого случая изображается последовательным соединением rs и Сбар (рис. 2.2, в). Таким образом, зависимость добротности варикапа Q от частоты (рис. 2.3) имеет максимум в диапазоне 10 – 30 МГц.

На высоких частотах добротность варикапа по (2.3) об-ратно пропорциональна сопротивлению rs. Для снижения rs целесообразно уменьшать толщину n -области базы. Но чтобы обеспечить эффективное изменение Сбар от прило-женного обратного напряжении, концентрация примесей в тонкой n -области структуры варикапа должна быть по возможности минимальной. Нижний предел концентрации примесей в базе ограничен снижением напряжения про-боя, уменьшением диапазо-на изменения Cбар макси-мальным значением rs. Структура p+-n-n+ -типа позволяет осуще-ствить рациональный, выбор концентрации и распределе-ния примесей в базе с уче-том диапазона изменения емкости Cбар и значения со-противления rs при высокой добротности варикапа. Составная n-n+ -база обеспечивает глубокое проникновение электрического поля p+-n -перехода в базу, резкое изменение толщины перехода при обратном напряжении, высокое значение пробивного напряжения (из-за увеличения толщины перехода при возрастании Uобр) и добротности варикапа, так как наличие n+ -области базы с высокой концентрацией примесей снижает сопротивление rs.

 

 

 

Рисунок 2.3 – Зависимость добротности варикапа от частоты

 

Добротность варикапа уменьшается с повышением тем-пературы, так как при этом возрастает сопротивление rs. С увеличением обратного смещения емкость Сбар и сопро-тивление rs, уменьшаются, а добротность соответственно растет. Уменьшение rs, в последнем случае объясняется расширением перехода и уменьшением толщины базы w в n -области структуры варикапа.

 

2.2 Цель работы

 

Научиться определять характеристики и параметры варикапов, а также параметры его эквивалентной схемы.

 

2.3 Задачи

 

Для достижения поставленной цели вам необходимо решить следующие задачи:

– ознакомиться со справочными данными используемого варикапа;

– провести измерения емкости и добротности варикапа при различных напряжениях и частотах;

– построить вольтфарадную характеристику варикапа и зависимость его добротности от частоты;

– рассчитать параметры варикапа и параметры его эквивалентной схемы.

 

2.4 Порядок работы и методы решения задач

 

2.4.1 Из справочника /1/ выпишите кратко основные электрические параметры исследуемого варикапа, начертите его условное графическое обозначение /5/, эскиз внешнего вида. Расшифруйте маркировку.

2.4.2 С помощью установки, состав которой приведен на рисунке 2.1, проведите измерения емкости и добротности варикапа.

Измерение емкости и добротности варикапа производится с помощью промышленного прибора Q -метра Е9-4 методом включения в резонансный контур. Принципиальная схема измерения емкости этим методом показана на рисунке 2.2.

Перед подключением варикапа к клеммам Q -метра, проведите операции “установка нуля” и “калибровка”, согласно инструкции по эксплуатации прибора.

Выбрав необходимую частоту измерения и установив ее ручками “Частота”, подключите к клеммам Q -метра соответствующую этой частоте катушку индуктивности контура Lk (рисунок 2.2). Изменяя емкость контура Ck, настройте его в резонанс по максимуму показаний вольтметра, отградуированного в единицах Q. Произведите отсчет емкости С1 и добротности Q1 контура Lk, Ck.

К клеммам Q -метра подключите варикап, задайте ему необходимый режим по напряжению с помощью внешнего источника питания УИП-2 и, вновь меняя емкость контура Ck, добейтесь резонанса в цепи контура с варикапом. Произведите отсчет емкости контура С2 и добротности цепи Q2.

Не меняя частоты измерения, отсчет С2 и Q2 произведите при напряжениях на варикапе Uобр = 10; 20; 30; 40 и 50 В, добиваясь каждый раз резонанса в цепи контура с варикапом.

Указанные измерения емкости и добротности “чистого” контура и контура с варикапом произведите при частотах f = 0,2; 0,3; 0,6; 2; 5; 10; 20 МГц, меняя при этом частоту внутреннего генератора и катушки индуктивности Lk.

Все манипуляции по подключению и отключению катушек индуктивности и варикапа на Q -метре производите только при отсутствии напряжения на его клеммах от источника УИП-2!

При всех измерениях уровень напряжения внутреннего генератора поддерживайте таким, чтобы стрелка измерительного прибора “Уровень” была на соответствующей риске.

2.4.3 Произведите расчет емкости варикапа при различных измеренных значениях напряжений и частот как разность значений емкости Ck “чистого” контура с варикапом. Постройте вольт-фарадную характеристику варикапа для одной из частот.

Расчет добротности варикапа произведите по формуле

 


 

 

 

 

Рисунок 2.5 – Принципиальная электрическая схема для определения емкости и добротности варикапа

 

.

 

Постройте зависимость добротности варикапа от частоты /2, раздел 3.5; 3, раздел 3.31/ при одном из постоянных напряжений.

2.4.4 На основании данных, полученных при измерениях емкости и добротности варикапа, рассчитайте:

– коэффициент перекрытия по емкости Кс;

– параметры эквивалентной схемы варикапа – сопротивление p-n -перехода Rу и сопротивление базовой области rs /2, раздел 3.5; 3, раздел 3.31/.

Изобразите эквивалентную схему варикапа, поясните природу входящих в нее элементов.

Отчет о работе должен содержать результаты изучения, измерений и вычислений по всем пунктам задания.

Для успешной защиты выполненной работы вы должны уметь пояснить ход вольт-фарадной характеристики варикапа, зависимость его добротности от частоты, уметь определять его параметры.

 

Литература

 

1 Аксенов А. И. Отечественные полупроводниковые приборы. Транзисторы биполярные. Диоды. Варикапы. Стабилитроны и стабисторы. Тиристоры. Оптоэлектронные приборы. Аналоги отечественных и зарубежных приборов: Справ. изд. – 6-е изд., доп. и испр. – М.: Солон-Пресс, 2008.–589 с.: ил.

2 Шишкин Г. Г. Электроника: Учеб. для вузов / Г. Г. Шишкин, А. Г. Шишкин. – М.: Дрофа, 2009. – 703 с.: ил.

3 Пасынков В. В., Чиркин Л. К. Полупроводниковые приборы: Учеб. пособие. – 8-е изд., испр. – СПб.: Лань, 2006. – 480 с.: ил.




Поделиться с друзьями:


Дата добавления: 2015-05-06; Просмотров: 1865; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.058 сек.