Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Разновидности тренировочных эффектов




Срочная адаптация

1. Начальный этап – наблюдается усиление сократительной активности мышц, возникают сдвиги в системах энергообеспечения (изменение баланса макроэргических фосфатов в клетке, усиление синтеза АТФ, восстановление баланса макроэргов).

2. Промежуточный этап – активация фактор-регулятора, который контролирует активность генетического аппарата клетки, определяет синтез нуклеиновых кислот и специальных белков в клетке. В роли фактор-регулятора может выступать свободный креатин, цАМФ. Именно активация фактор-регулятора определяет переход срочной адаптации в долговременную, и именно фактор-регулятором в процессе долговременной адаптации определяются пластические изменения в клетке (активация синтеза нуклеиновых кислот и белков, возрастание сократительных структур в мышцах, повышение эффективности его функционирования, более совершенное энергообеспечение).

 

 

Адаптация организма проявляется на уровне различных тренировочных эффектов:

Срочный тренировочный эффект Определяется величиной и характером физиологических и био-химических изменений в организме, которые наблюдаются во вре-мя действия физической нагрузки и в период срочного восста-новления, когда происходит ликвидация кислородного долга.
Отставленный (пролонгирован-ный) тренировочный эффект Наблюдается на поздних фазах восстановления после физической нагрузки. Его сущность составляют стимулированные работой пла-стические процессы, направленные на восполнение энергетических ресурсов организма и ускоренное воспроизводство разрушенных при работе и вновь синтезируемых клеточных структур.
Кумулятивный тренировочный эффект Результат последовательного суммирования большого числа сроч-ных и отставленных эффектов. Здесь воплощаются биохимические изменения, связанные с усилением синтеза нуклеиновых кислот и белков. Выражается в приросте показателей работоспособности и улучшении спортивных результатов.

 

1.4. Эффективность тренировки по зависимости «доза – эффект», феномен суперкомпенсации, развитие показателей мощности, емкости и эффективности аэробной и анаэробной работоспособности.

Развитие адаптации под воздействием тренировки с возрастающими физическими нагрузками описывается зависимостью «доза-эффект». Небольшие физические нагрузки недостаточны для возбуждения адаптационных изменений в организме, не стимулируют развитие тренируемых функций, относятся к категории неэффективных нагрузок. Для обеспечения прироста тренируемых функций величина физической нагрузки должна превышать пороговое значение. Эти наблюдения способствовали появлению принципа сверхотягощения.

Принцип сверхотягощения: адаптационные изменения под влиянием тренировки возникают тогда, когда объем и интенсивность нагрузки в достаточной степени отягощают тренируемую функцию и побуждают ее к развитию.

Существование порогового значения нагрузки и феномена сверхотягощения в процессе тренировки связано с развитием адаптационных изменений в организме, которые, в свою очередь, обеспечиваются двумя различными функциональными системами:

1) системой внутриклеточного энергетического обмена, и связанных с ней функций вегетативного обслуживания;

2) гормональными симпато-адреналовой, гипофизарно-адренокортикальной системами, которые активируются в случае, когда раздражитель превышает определенный пороговый уровень.

Неспецифические реакции, вызванные сильными раздражителями и обусловленные вышеназванными гормональными системами, определяются, как синдром стресса, а раздражители – как стрессоры. Возникновение общего адаптационного синдрома ведет к возбуждению важных вегетативных центров и, как следствие, возбуждению гормональных систем, что в свою очередь вызывает повышение концентрации катехоламинов и глюкокортикоидов в крови и тканях. Эти гормоны способствуют мобилизации энергетических и пластических ресурсов в организме.

Вывод: физическая нагрузка стрессового уровня вызывает в организме реакцию мобилизации, которая облегчает возникновение необходимых адаптационных изменений в тренируемых функциях.

Существует индивидуальный предел адаптации, и по мере приближения к этому пределу, темпы прироста ведущих функций постепенно замедляются, а потом прекращаются. При перегрузке (перетренировке) спортсмена в данном случае возникает парадоксальная ситуация и это характеризует срыв адаптации, т.е. развитие состояния перетренированности.

Принципы, основанные на закономерностях биологической адаптации:

- принцип специфичности,

- принцип обратимости действия,

- принцип положительного взаимодействия,

- принцип последовательной адаптации,

- принцип цикличности.

Принцип специфич-ности Наиболее выраженные адаптационные изменения под влиянием тре-нировки наблюдаются в органах и функциональных системах, которые нагружаются в большей степени. При этом в организме формируется доминирующая система, гиперфункция которой обеспечивает развитие адаптации. Наиболее нагруженная система обеспечивает в организме преимущества в пластическом и энергетическом обмене.
Принцип обратимости действия Непостоянство адаптационных изменений в организме наблюдается при перерыве в тренировке, когда положительные структурные функцио-нальные сдвиги в доминирующей системе постепенно снижаются, и ис-чезают.
Принцип положитель-ного взаимодейст-вия Кумулятивный эффект, возникающий после многократного повторения нагрузки, не является простым сложением некоторого числа срочных и отставленных тренировочных эффектов. Каждая последующая нагрузка воздействует на адаптационный эффект и может видоизменять его. Положительное взаимодействие – суммирование тренировочных эффектов вызывает усиление адаптационных изменений в организме. Отрицательное взаимодействие тренировочных эффектов вызывает уменьшение адаптационных изменений в организме. Нейтральное взаимодействие – заметных изменений и влияний на адаптационные эффекты не наблюдается.
Принцип последова-тельной адаптации Основан на гетерохронизме (разновременности) биохимических и функ-циональных изменений в организме, которые возникают при трени-ровке. Наиболее быстро адаптируется алактатная анаэробная система, затем система анаэробного гликолиза, и наиболее медленно – процессы окислительного фосфорилирования; в функциональном отношении – в зависимости от сложности упражнения: может адаптироваться вначале нервно-мышечный аппарат, а после адаптируются вегетативные систе-мы, но в сложнокоординационных видах спорта – наоборот. В период восстановления наиболее быстро достигается суперкомпенсация при выполнении упражнений кратковременных и мощных, что проявляется в быстром восстановлении содержания креатинфосфата; в упражнениях более длительных и менее мощных фаза суперкомпенсации наступает более медленно и проявляется в восстановлении гликогена, липидов и белков в мышцах. В процессе долговременной адаптации наиболее быстро изменяются показатели мощности биоэнергетических процес-сов, затем энергетической емкости, и на заключительной стадии адапта-ции улучшаются показатели метаболической эффективности.
Принцип цикличности Исходит из фазного характера адаптационных процессов в организме. Для развития адаптации тренировочные эффекты разных нагрузок должны суммироваться по определенным правилам, создавая завершен-ный цикл воздействия на ведущие функции. Такие циклы повторяют многократно, когда решается определенная педагогическая задача.

 

1.5. Общий адаптационный синдром, железы внутренней секреции, играющие основную роль в реализации адаптационного синдрома.

Функции эндокринных желез регулируются ЦНС, которая контролирует выделение всех гормонов. Нервные и гуморальные воздействия на различные органы и ткани представляют собой проявление единой системы нейрогуморальной регуляции функций организма. Нервные влияния на эндокринные органы осуществляются или путем непосредственной нервной импульсации, или путем изменения функции передней доли гипофиза (секреции нейрогормонов клетками промежуточного мозга).

МОЗГОВОЙ СЛОЙ НАДПОЧЕЧНИКОВ: Надпочечники расположены над верхними полюсами почек, каждый из них весит 3-5г и состоит из мозгового и коркового слоев. По-существу, представлен двумя разными железами. Мозговой слой образует сероватую «сердцевину», составляя 10-20% веса всей железы.

Основным гормоном, образующимся в мозговом слое, является адреналин. Наряду с ним из мозгового слоя поступает в кровоток норадреналин. В более значительных количествах норадреналин синтезируется в нервных окончаниях симпа­тической нервной системы (где он выполняет роль медиаторного вещества) и отсюда в основном поступает в кровь. Адреналин, как и норадреналин, сразу после образования входит в специфические гранулы эндоплазматической сети клеток железы и может быть депонирован таким путем в течение необходимого времени. Под влиянием симпатических нервных импульсов, приходящих к железе по чревному нерву, гормоны освобождаются из гранул и поступают в кровоток.

Адреналин и норадреналин сходны по своим свойствам и физиоло­гическому влиянию, но их действие на разные функции различны. Норадреналин сильнее действует на кровеносные сосуды, и ему принадлежит основная роль в сосудодвигательных реакциях. Но в регуляции обменных процессов адреналин в 4-8 раз активнее норадре­налина. Адреналин оказывает сосудосуживающее действие на кровеносные сосуды кожи, почек, селезенки и органов пищеварительного тракта, а путем изменения обмена веществ оказывает вторичное сосудорасширяющее влияние на сосуды мозга, скелетные мышцы и миокард.

Под влиянием адреналина ускоряется и усиливается деятельность сердца, повышается его возбудимость и увеличивается скорость проведения импульсов по сердечной мышце. Адреналин способен усиливать окислительные процессы. Выражением этого является повышенная теплопродукция.

Роль адреналина в мобилизации энергетических ресурсов организма заключается в том, что под его влиянием расщепляется гликоген печени. В результате этого усиливается поступление глюкозы из печени в кровь и возрастает ее содержание в крови. Анаэробный распад гликогена в мышцах также происходит при действии адреналина на соответствующую ферментативную систему. В связи с этим адреналин играет важную роль в мобилизации анаэробной работоспособности организма. Другая сторона роли адреналина в мобилизации энергетических ресурсов организма заключается в его липолитическом действии. Оно выражается в ускорении распада жиров, вследствие чего содержание свободных жирных кислот (важного субстрата окислительных процессов) увеличивается как в самой жировой ткани, так и в крови. Воздействуя на ретикулярную формацию мозга, адреналин способствует повышению возбудимости ЦНС.

Таким образом, адреналин играет важную роль в мобилизации возможностей и ресурсов организма. Поэтому он оправданно называется гормоном тревоги.

Центральная нервная система управляет секрецией адреналина через симпатические нервы. Как адреналин, так и симпатические нервные импульсы мобилизуют целый ряд функций организма, усиливая их активность. Более того, аналогично адреналину действует норадреналин, который образуется кроме надпочечников в основном в симпатиче­ских нервных окончаниях и поступает оттуда при усилении активности симпатических нервов в кровоток. Таким образом, симпатический отдел вегетативной нервной системы вместе с мозговым слоем надпочечником составляют единую симпато-адреналовую систему, выполняющую важную роль в энергетическом обеспечении любых адаптационных процессов и мобилизации способностей организма к борьбе за существование. Эмоциональные раздражители, как правило, усиливают активность симпато-адреналовой си­стемы, в результате чего по­вышается уровень катехоламинов (адреналина и норадренали­на) в крови.

Симпато-адреналовая систе­ма при мышечной деятель­ности. Результат борьбы за существование зависит в животном мире в большинстве случаев от эффективности мы­шечной деятельности. Поэто­му вполне естественно, что существует обоюдная взаимосвязь между мышечной деятельно­стью и активностью симпато-ад­реналовой системы: мышечная деятельность активирует симпато-адреналовую систему; повышенная активность последней спо­собствует увеличению эффектив­ности мышечной работы.

Содержание адреналина и нор­адреналина в крови увеличивается при мышечной работе пропорци­онально ее мощности. Прирост концентрации норадре­налина в крови становится значи­тельным, если мощность рабо­ты превышает уровень МПК.

При выполнении длительной физической работы, а также при других длительно поддерживающихся напряжениях, в активности симпато-адреналовой системы выделяются три фазы:

1) повышение концентрации норадреналина и адреналина в крови без существенного снижения уровня адреналина в надпочечниках;

2) сохранение повышенных концентраций норадреналина и адреналина в крови при заметном уменьшении уровня адреналина в надпочечниках;

3) снижение концентрации адреналина и норадреналина во всех тканях, включая и кровь.

Последняя фаза свойственна состоянию значительного утомления. Очевидно, снижение эффективности мышечной работы при утомлении должно быть связано с недостаточной активностью симпато-адреналовой системы. С другой стороны, давно известно, что посредством введения адреналина или раздражения симпатических нервов можно повысить работоспособность утомленных мышц (феномен Орбели — Зецинского).

КОРКОВЫЙ СЛОЙ НАДПОЧЕЧНИКОВ: Кора надпочечников является жизненно важной железой внутренней секреции. Типичными симптомами недостаточности гормонов коры надпочечников являются мышечная слабость и быстрая утомляемость. После введения гормонов коры надпочечников работоспособность нормализуется.

Корковый слой надпочечников состоит из трех зон: наружной – клубочковой, средней – пучковой и внутренней – сетчатой. Эти зоны различаются между собой не только по гистоструктуре, но и по функциональной активности и гормонам, образующимся в них.

Гормоны коры надпочечников являются стероидами и называются кортикостероиды, или кортикоиды. Они делятся на три группы:

1) минералокортикоиды, выделяемые в клубочковой зоне и регули­рующие минеральный обмен в основном на уровне почек;

2) глюкокортикоиды, выделяемые в пучковой зоне, оказывают различные регуляторные воздействия в широком диапазоне;

3) аналоги половых гормонов, выделяемые в сетчатой зоне.

Минералокортикоиды

Основным и наиболее активным минералокортикоидом является альдостерон. Он увеличивает реабсорбцию натрия в канальцах почек, и поддерживает на должном уровне его содержание в плазме крови, лимфе и тканевой жидкости. Это приводит к задержке воды в организме и способствует повышению артериального давления. Усиливая выход калия в мочу, альдостерон уменьшает содержание его в организме. При недостатке минералокортикоидов организм теряет такое количество натрия, что могут возникать изменения внутренней среды, приводящие к смерти.

Во время мышечной работы, сопровождающейся усиленным потоотделением, а также в некоторых других условиях, вызывающих значительные потери жидкости (например, при перегревании), продукция альдостерона усиливается. В результате резко уменьшатся выведение с мочой натрия, чем компенсируются значительные потери воды, вызванные потоотделением. С потом же теряется и некоторое количество калия. Однако, во время мышечной работы распад гликогена и тканевых белков ведет к освобождению большого количества ионов калия. В этих условиях усиление выведения калия через почки и пот является более благоприятной реакцией, чем задержка его. Усиление секреции альдостерона предохраняет организм от существенных изменений содержания натрия и калия в плазме крови. Это важно при длительных физических упражнениях, например при марафонском беге. Клубочковая зона коры надпочечников при некоторых условиях может выделять в небольших количествах дезоксикортикостерон, оказывающий действие, аналогичное альдостерону.

Наиболее важными регуляторами секреции альдостерона является отношение натрия и калия в плазме крови и ангиотензин II. Увеличение отношения Nа/К задерживает, а уменьшение его ускоряет секретно альдостерона. Ангиотензин II, усиливающий продукцию альдостерона, образуется в плазме крови под влиянием ренина. Источником ренина является эндокринно-активная ткань почек. Секреция ренина усиливается при уменьшении объема циркулирующей крови и снижении осмотического давления плазмы.

Глюкокортикоиды

К глюкокортикоидам, продуцируемым корой надпочечников, относятся кортизол и кортикостерон.

Значение глюкокортикоидов в процессах адаптации. Глюкокортикоиды называются адаптивными гормонами. При их недостатке затрудняется развитие адаптации, и организм становится чувствительным к воздействию любых изменений внешней среды.

Адаптивное значение глюкокортикоидов заключается во влиянии их на белковый и углеводный обмен и участии в механизме действия катехоламинов. В связи с последним, целый ряд физиологических реакций возможно осуществлять только при наличии достаточного количества глюкокортикоидов. Это рассматривается как пермиссивное, или разрешающее, влияние глюкокортикоидов.

Основным во влиянии глюкокортикоидов на белковый обмен является мобилизация ресурсов аминокислот и индукция (в частности, в печени) синтеза целого ряда ферментов. Глюкокортикоиды угнетают синтез белков во многих тканях, в том числе и мышечной. Это ведет к смещению равновесия между синтезом и расщеплением тканевых белков в сторону доминирования последнего. В лимфоидной ткани влияние глюкокортикоидов непосредственно катаболическое. В результате этого влияния, происходит увеличение фонда свободных аминокислот. Через синтез соответствующих ферментов глюкокортикоиды усиливают переаминирование аминокислот. Таким образом, глюкокортикоиды не только мобилизуют «строительные материалы» для адаптивных процессов и нового синтеза необходимых белков, но и подготавливают их для использования по назначению. Глюкокортикоиды управляют отчасти применением этих целенаправленно подготовленных аминокислот, включая синтез ряда ферментов. Ферменты, синтез которых индуцируется глюкокортикоидами, участвуют не только в обмене аминокислот, а также в новообразовании глюкозы и гликогена. Поэтому под влиянием глюкокортикоидов увеличиваются запасы гликогена в печени и концентрация глюкозы и крови. Отсюда и их название — глюкокортикоиды. Кроме того, под влиянием глюкокортикоидов усиливается работа ионных насосов, что, играет важную роль в поддержании их эффективности.

Глюкокортикоиды играют важную роль также в приспособлении организма к мышечной работе. Если выполняемая физическая нагрузка достаточной интенсивности, то отмечается повышенная активность коры надпочечников. В результате содержание кортизола и кортикостерона в крови увеличивается. Благодаря этому мобилизуются белковые ресурсы организма; усиливается новообразование гликогена в печени; обеспечивается эффективное перемещение ионов через клеточные мембраны и удаление из клеток воды, образующейся в результате усилении окислительных процессов; тонизируются многие приспособительные реакции, в том числе реакции сердечно-сосудистой системы. Однако при длительных утомительных нагрузках вслед за первоначальным усилением наблюдается угнетение продукции глюкокортикоидов. Эту реакцию можно рассматривать как защитную, направленную на предотвращение чрезмерных затрат ресурсов организма.

Общий адаптационный синдром

При действии факторов, ведущих к изменениям внутренней среды, сохранение жизни в высокоорганизованном организме возможно только при возникновении специальных гомеостатических реакций, обеспечивающих восстановление необходимого постоянства внутренней среды организма. Эти защитные меры и компенсаторные изменения являются специфическими, т. е. они защищают организм только от данного фактора.

По мере нарастания силы и продолжительности воздействия, а также интенсивности выполняемых актов жизнедеятельности специфические гомеостатические реакции требуют поддержки со стороны общей мобилизации энергетических и пластических ресурсов организма. Включается механизм общей адаптации, выражающейся в общих, неспецифических приспособительных реакциях. Состояние организма, характеризующееся развертыванием механизма общей неспецифической адаптации, Г. Селье назвал «состоянием стресса» (от англ, стресс – напряжение). Фактор, обусловливающий его развитие, обозначается понятием «стрессор».

К основным компонентам общей адаптации относятся: 1) мобили­зация энергетических ресурсов организма и энергетическое обеспечение функций; 2) мобилизация пластического резерва организма и адаптивный синтез ферментов и структурных белков; 3) мобилизация защитных способностей организма.

В мобилизации энергетических ресурсов организма первенствующее значение принадлежит симпато-адреналовой системе, а в мобилизации пластического резерва — гормонам коры надпочечников. Особо важная сторона механизма общей адаптации заключается в том, что в результате срочных реакций наступают изменения, способные активировать адаптивный синтез белков. Благодаря последнему, достигается переход в долговременную адаптацию, в основе которой лежит морфофункциональное совершенствование клеточных структур. Хорошим примером перехода срочных адаптационных реакций в долговременную адаптацию, сопровождаемую повышением функциональных возможностей организма, является физическая тренировка.

Таким образом, стрессовая реакция представляет собой нормальное приспособление организма к сильному действию разных факторов. Если сила воздействия превышает возможности организма компенсировать его и обеспечить защиту, развиваются патологические изменения. Иногда они выявляются также вследствие чрезмерности или недостаточности стрессовой реакции.

Стрессовая реакция включает совокупность последовательных изменений в организме, которые составляют, по Г.Селье, общий адаптационный синдром. Первая его стадия – стадия тревоги. Она характеризуется развертыванием активности механизма общей адаптации, т.е. стрессовой реакцией. Типичными изменениями при этом в функциях эндокринных желез являются усиленная продукция адреналина, норадреналина и кортизола.

После повторных воздействий эта стадия переходит во вторую стадию – стадию резистентности (устойчивости). Ей свойственно постепенное понижение активности коры надпочечников и симпато-адреналовой системы, вплоть до отсутствия заметных изменений в ответ на воздействие стрессора. В то же время развиваются высокие резервные возможности коры надпочечников. Сопротивляемость организма стрессору повышается, что обеспечивается уже не усиленной продукцией глюкокортикоидов и адреналина, а повышенной тканевой устойчивостью. Последнее основывается на морфофункциональном совершенствовании клеточных структур в виде развития долговременной адаптации.

Всякое приспособление, однако, имеет свои границы. При длительном или слишком частом повторении воздействия стрессора или при одновременном воздействии на организм нескольких стрессоров фаза резистентности переходит в третью стадию – стадию истощения. Она характеризуется резким снижением сопротивляемости организма по отношению ко всяким стрессорам.

Продуцирование половых гормонов корой надпочечников

В сетчатой зоне коры надпочечников образуются стероидные гормоны, которые сходны со стероидными гормонами, продуцируемыми половыми железами.

Понятие физиологической адаптации впервые сформули­ровано американским физиологом У. Кенноном (1871-1945), как совокупность реакций организма на неблагоприятные условия внешней среды, направленные на поддержание гомеостаза.

В современной литературе под адаптацией понимают приспособительные реакции организма при действии не только неблагоприятных или экстремальных (стрессовых), но и при действии обычных факторов.

Установлено, что любые приспособительные реакции организма осуществляются под контролем ЦНС, благодаря формированию специальных систем адаптации, которые включают корковые и подкорковые отделы головного мозга. Особая роль в формировании защитных реакций организма при воздействии экстремальных факторов принадлежит гипофизу и надпочечникам.

Процесс адаптации имеет несколько стадий развития. Это зависит от силы внешнего раздражителя. Вначале активизи­руются энергетические, а потом пластические ресурсы клетки. Если сила раздражителя не очень большая и этих ресурсов до­статочно, то состояние организма нормализуется. Если же си­ла раздражителя очень значительна, то возникает необходи­мость в мобилизации всех ресурсов организма.

В настоящее время адаптацию рассматривают как уровень индивидуального здоровья.

 

1.6. Понятие о дезадаптации, перекрестной адаптации, и реадаптации. Цена адаптации.

В процессе постепенного приспособления к постоянно возрастающим физическим нагрузкам повышаются и адаптационные возможности организма не только к действию этих специфических раздражителей, но и к целому ряду других. К примеру, адаптация организма к физическим нагрузкам повышает устойчивость организма к простудным заболеваниям. Это состояние – перекрестной адаптации. Механизмы перекрестной адаптации положены в основу применения физической культуры для повышения биологической устойчивости к воздействиям внешней среды.

Процессы адаптации протекают по общим закономерностям, но имеют индивидуальный характер, что определяется наследственностью.

Дезадаптация – потеря адаптации, проявляется в гетерохронном исчезновении физиологических и биохимических реакций организма к стрессирующему фактору.

Реадаптация – восстановление адаптационных возможностей организма.

Цена адаптации или адаптационная плата – это резкое снижение общих адаптационных возможностей организма, на фоне резко возросших адаптационных возможностей к одному специфическому фактору. Это происходит, потому что все резервы организма используются именно для обеспечения специфической адаптации, а для общей адаптации организма возникает дефицит резервов, и, соответственно, наблюдается общее снижение адаптационных возможностей организма.

 

Адаптационные изменения, наблюдаемые в различных системах организма.

1) Адаптация скелетных мышц проявляется в следующих изменениях:

*метаболические изменения – накопление большего количества гликогена, креатинфосфата, миоглобина, увеличение количества белковых структур (актина – сократительного белка тонких мышечных филаментов), митохондрий.

* увеличение площади сечения мышц – саркоплазматическая или миофибриллярная гипертрофия;

* увеличение количества капилляров мышц;

2) Адаптация сердца проявляется в:

* увеличении систолического (СОК) и минутного (МОК) объемов крови сердца;

* увеличении массы сердца (гипертрофия миокарда);

* более экономичной работе сердца – снижение ЧСС (частоты сердечных сокращений);

* увеличение количества капилляров, питающих миокард.

3 ) Адаптация дыхательной системы проявляется в:

* увеличении максимальной дыхательной способности, которая обеспечивается за счет:

а) увеличения всех дыхательных объемов;

б) повышения работоспособности дыхательной мускулатуры;

в) возрастание диффузной способности легких.

4) Адаптация нервной системы проявляется в организации более совершенной внутри- и межмышечной координации, что обеспечивает совершенствование техники и проявление физических качеств мышц; более четком взаимодействии моторных и вегетативных центров регуляции функций;

5) Повышение выносливости (общей и специальной):

* увеличение ПАНО – порога анаэробного обмена;

* снижение чувствительности нервных центров к изменению рН среды;

* поддержание работоспособности при гипоксии.

6) Адаптация системы крови и кровообращения проявляется в:

* перераспределении крови (приток крови к работающим мышцам);

* выходе депонированной крови;

* увеличении количества гемоглобина;

* усиление буферной функции крови (гемоглобиновый буфер).

* совершенствовании сосудистой регуляции

Степень адаптации может быть определена, как степень тренированности спортсмена, и является индивидуальной особенностью каждого спортсмена. Определяется характером и величиной (объемом) физической нагрузки.

 




Поделиться с друзьями:


Дата добавления: 2015-05-06; Просмотров: 1227; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.082 сек.