Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

От переводчика 21 страница




довольно многими астрономами. Однако никто не зарегистрировал взрыва. Возможно, как предположил И. С. Шкловский, там находится черная дыра, которая поглотила взорвавшееся ядро звезды и погасила огонь сверхновой. Выводимые в космос телескопы должны проверить эти фрагментарные данные, и, возможно, они сумеют найти следы легендарных черных дыр.

Хороший путь к пониманию черных дыр — представление о кривизне пространства. Представим себе плоскую эластичную натянутую двумерную мембрану, например лист резины с нанесенной на него клетчатой разметкой. Если мы уроним на мембрану тело небольшой массы, она деформируется, прогнувшись. Мраморные шарики, катясь по кругу, огибают образовавшуюся воронку, подобно планетам, обращающимся по орбитам вокруг Солнца. Такая интерпретация, которой мы обязаны Эйнштейну, представляет тяготение деформацией ткани пространства. В приведенном примере мы видим двумерное пространство, искривленное под действием массы в третье физическое измерение. Вообразите, что мы живем в трехмерной Вселенной, которая местами прогибается под действием материи в четвертое физическое измерение, не поддающееся непосредственному восприятию. Чем больше масса, тем сильнее гравитация, тем значительнее прогиб или искривление пространства. В этой аналогии черная дыра — что-то вроде бездонной ямы. Что случится, если вы в нее упадете? На взгляд снаружи вам понадобится бесконечное время, чтобы упасть на дно, поскольку все ваши часы — и механические, и биологические — будут выглядеть остановившимися. Однако с вашей точки зрения все ваши часы будут идти нормально. Если вам удастся выдержать воздействие приливных сил и потоков излучения и к тому же (что весьма вероятно) черная дыра окажется

вращающейся, вполне возможно, что вас выбросит где-нибудь в другой области пространства-времени — в какое-то другое пространство, в иное время. Возможность существования таких «червоточин» в пространстве, немного напоминающих те, что бывают в яблоке, рассматривается вполне серьезно, хотя пока никоим образом не подтверждена. Могут ли гравитационные туннели оказаться чем-то вроде межзвездных или межгалактических подземных ходов, позволяющих нам попасть в недоступные места намного быстрее, чем обычными путями? Способны ли черные дыры послужить машинами времени, переносящими нас в незапамятное прошлое или в отдаленное будущее? Даже сам факт, что подобные вопросы обсуждаются, пусть и на полусерьезном уровне, показывает, насколько сюрреалистичным может оказаться наш мир.

Мы дети Космоса в самом глубоком смысле. Вспомните жар солнца на вашем запрокинутом к небу лице в безоблачный летний день; вспомните, как опасно прямо смотреть на Солнце. Мы ощущаем его энергию на расстоянии 150 миллионов километров. Что бы мы почувствовали на его кипящей самосветящейся поверхности или погрузившись в глубину его ядерного пламени? Солнце согревает нас, кормит и дает возможность видеть. Оно оплодотворяет Землю. Его могущество лежит далеко за пределами человеческого опыта. Птицы своими песнями приветствуют солнечный восход. Даже некоторые одноклеточные организмы устремляются навстречу свету. Наши предки поклонялись Солнцу*, а они были вовсе не глупыми людьми. И все же Солнце —

* В древнешумерском пиктографическом письме бог обозначался звездочкой — символом звезд. Ацтеки называли бога Теотль, а его символом было изображение Солнца. Небесный свод носил название Теоатль — божественное море, космический океан. — Авт.

обычная, даже заурядная звезда. Если мы должны поклоняться силе, превосходящей нашу собственную, разве не разумно почитать Солнце и звезды? В глубине каждого астрономического исследования, порой так глубоко, что сам его автор об этом не подозревает, скрывается зерно этого благоговейного трепета.

Галактика — неисследованный континент, полный экзотических существ звездного масштаба. Мы провели лишь предварительную рекогносцировку и встретились с отдельными обитателями. Некоторые из них напоминают нам что-то знакомое. Странности других превосходят самые невероятные фантазии. Но изыскания еще только начаты. Опыт прошлых экспедиций подсказывает нам, что многие наиболее интересные обитатели галактического континента еще не обнаружены и не предсказаны. Совсем недалеко от нашей Галактики, в Магеллановых облаках и в шаровых скоплениях вокруг Млечного Пути, почти наверняка есть планеты. В таких мирах нас поразил бы головокружительный вид восходящей Галактики — огромной спирали из 400 миллиардов звезд с коллапсирующими газовыми облаками, конденсирующимися планетными системами, лучезарными сверхгигантами, стабильными звездами средних лет, красными гигантами, белыми карликами, планетарными туманностями, новыми, сверхновыми, нейтронными звездами и черными дырами. В таком мире сразу было бы ясно, как это начинает становиться понятно в нашем, что наше вещество, наша форма и многое в нашем характере определяется глубочайшей связью между жизнью и Космосом.

 

 

Глава X КРАЙ ВЕЧНОСТИ

 

Вот вещь, в хаосе возникающая, прежде неба и земли родившаяся! О беззвучная! О лишенная формы! Одиноко стоит она и не изменяется. Повсюду действует и не имеет преград. Ее можно считать матерью Поднебесной! Я не знаю ее имени. Обозначая иероглифом, назову ее Дао. Произвольно давая ей имя, назову ее великое. Великое — оно в бесконечном движении. Находящееся в бесконечном движении не достигает предела. Не достигая предела, оно возвращается [к своему истоку]*.

Лао-цзы. Дао дэ цзин. Китай. Около 600 г. до н. э.

Есть дорога в выси, на ясном зримая небе; Млечным зовется Путем, своей белизною заметна. То для всевышних богов — дорога под кров

Громовержца, В царский Юпитера дом.

Встали пенаты богов-небожителей, властию славных.

Это-то место — когда б в выражениях был я

смелее —

Я бы назвал, не боясь, Палатином великого неба**.

Овидий. Метаморфозы. Рим. I в. н. э.

Некоторые глупцы заявляют, что мир создан Творцом.

Доктрина, согласно которой мир был сотворен, противоречит здравому смыслу и должна быть отвергнута.

* Цит. по: Древнекитайская философия / Пер. с древнекит.: В 2 т. М., 1972. ** Перевод С. Шервинского.

Если Бог создал мир, то где Он был до творения?.. Как мог Бог сотворить мир без всякого исходного материала? Если сказать:

Он сначала создал материал, а потом мир, то мы приходим к бесконечной регрессии... Знайте, что мир, как и само время, является несотворенным, не имеющим ни начала, ни конца. И это лежит в его основе.

Махапурана. Индия

Десять или двадцать миллиардов лет назад случилось удивительное событие — Большой Взрыв, с которого началась наша Вселенная. Почему он произошел — величайшая из всех загадок. Но вот что случилось, мы знаем довольно хорошо. Вся материя и энергия Вселенной были сжаты до невероятно высокой плотности — в космическое яйцо, вроде тех, о которых упоминают многие мифы о творении; возможно, в математическую точку, вовсе лишенную размеров. Не то чтобы все вещество и энергия были втиснуты в какой-то уголок нынешней Вселенной, нет; скорее вся Вселенная — материя, энергия и пространство, которое они заполняли, — умещалась в очень малом объеме. В ней было очень немного места для событий.

Колоссальный космический взрыв положил начало расширению Вселенной, которое с тех пор никогда не прекращалось. Ошибочно описывать расширение Вселенной через аналогию с раздувающимся пузырем, наблюдаемым извне. По определению снаружи не могло находиться ничего из того, что мы знаем. Лучше представлять этот процесс изнутри, например воображая линии координатной сетки, приклеенные к движущейся ткани пространства, которое однородно расширяется во всех направлениях. По мере растяжения простран-

ства вещество и энергия расширяющейся Вселенной стремительно остывали. Излучение космического взрыва, которое, как тогда, так и сейчас, заполняет Вселенную, смещалось по спектру от гамма-лучей к рентгену и ультрафиолету, а затем через радугу цветов видимого спектра в инфракрасную часть спектра и радиодиапазон*. Порожденное Большим Взрывом фоновое космическое излучение, приходящее к нам со всех сторон, регистрируется современными радиотелескопами. В ранней Вселенной пространство было очень ярко освещено. С течением времени ткань пространства продолжала расширяться, излучение охлаждалось, и в какой-то момент в обычном видимом диапазоне космос стал темным, как теперь.

Молодая Вселенная была заполнена излучением и веществом — первоначально водородом и гелием, которые образовались из элементарных частиц плотного первичного огненного сгустка. Если бы в то время кто-то мог обозреть Вселенную, его взгляду было бы не за что зацепиться. Потом в газе появились небольшие сгущения, едва заметные неоднородности, которые начали расти. Стали формироваться волокна громадной паутины газовых облаков, скопления огромных, неповоротливых, медленно вращающихся объектов, яркость которых постоянно возрастала и каждое из которых оказалось в итоге состоящим из сотен миллиардов светящихся точек. Появились крупнейшие из известных образований во Вселенной. Мы видим их и сегодня.

* В наше время максимум этого излучения приходится на длину волны около 2 мм (частота 160 ГГц), что соответствует микроволновому диапазону. В русскоязычной литературе с подачи И. С. Шкловского это излучение принято называть реликтовым, тогда как в мире более распространен термин космический микроволновый фон.Пер.

Мы обитаем в затерянном уголке одного из них. Они зовутся галактиками*.

По прошествии около миллиарда лет после Большого Взрыва распределение вещества во Вселенной сделалось немного комковатым, оттого, возможно, что сам Большой Взрыв не был идеально однородным. Плотность вещества в комках оказалась немного выше, чем в других местах. Их гравитация притягивала большое количество окружающего газа, растущих облаков водорода и гелия, которым было суждено стать скоплениями галактик. Очень небольших начальных неоднородностей хватило для формирования весьма крупных сгущений вещества.

По мере продолжения гравитационного коллапса зародыши галактик вращались все быстрее, подчиняясь закону сохранения углового момента. Некоторые из них сплющивались по оси вращения, вдоль которой центробежная сила не уравновешивала гравитацию. Они стали первыми спиральными галактиками, огромными шутихами в открытом космосе. Другие протогалактики с более слабой гравитацией или меньшим начальным моментом импульса сплющились очень незначительно и стали первыми эллиптическими галактиками. По всей Вселенной галактики настолько похожи друг на друга, будто сделаны по одному шаблону, потому что простые

* Строго говоря, галактики не являются крупнейшими известными образованиями во Вселенной. Астрономы называют по крайней мере еще два вышестоящих уровня организации материи: скопления и сверхскопления галактик, характерные размеры которых составляют порядка десяти и более ста миллионов световых лет соответственно. Одно из крупнейших сверхскоплений галактик открыто в конце 2000 г. Оно простирается на 600 млн. световых лет и удалено от нас на 6,5 млрд. световых лет. Несмотря на огромность дистанции — чуть меньше половины расстояния до горизонта Вселенной, — сверхскопление занимает на небе площадь 2x5°, что в 40 раз больше площади полной Луны. — Пер.

законы природы — всемирное тяготение и сохранение углового момента — действуют во всем мировом пространстве. Та же физика, которая в земном микрокосме определяет движение падающего тела или вираж конькобежца, создает галактики в макрокосме Вселенной.

В нарождающихся галактиках облака гораздо меньшего размера также переживали гравитационный коллапс; температура внутри них возрастала, начинались термоядерные реакции и вспыхивали первые звезды. Горячие массивные молодые звезды, беззаботно расточая запасы водородного топлива, быстро эволюционировали и вскоре заканчивали свою жизнь в великолепных вспышках сверхновых, возвращая термоядерный пепел — гелий, углерод, кислород и более тяжелые элементы — в состав межзвездного газа, из которого появлялись новые поколения звезд. Первые массивные звезды, вспыхивая сверхновыми, порождали череду накладывающихся друг на друга ударных волн в окружающем газе, сжимая межгалактическую среду и ускоряя образование скоплений галактик. Гравитация не упускает случая усиливать даже незначительные конденсации вещества. Ударные волны сверхновых могли увеличить интенсивность аккреции вещества в любом масштабе. Началась эпопея космической эволюции, породившая из газа, оставшегося после Большого Взрыва, иерархию конденсаций материи: скопления галактик, галактики, звезды, планеты и, наконец, жизнь и разум, способный в общих чертах понять тот изящный процесс, который привел к его возникновению.

Сегодняшняя Вселенная заполнена скоплениями галактик. Некоторые из них совсем не велики, всего-то несколько десятков галактик. Так называемая Местная Группа включает только две большие галактики, обе спиральные — Млечный Путь и М31. Другие скопления

содержат несметные орды из тысяч галактик, связанных взаимными гравитационными узами. По некоторым признакам скопление в созвездии Девы содержит десятки тысяч галактик*.

В самом крупном масштабе мы живем во Вселенной галактик, которая, вероятно, содержит сотни миллиардов изысканных образцов космического созидания и разрушения, в равной мере обнаруживающих и порядок, и хаос. Это обычные спирали, под разными углами повернутые к лучу нашего зрения (некоторые плашмя, так что нам видны спиральные рукава, другие ребром, демонстрируя центральную полосу газа и пыли, где эти рукава формируются); пересеченные спирали, в которых через центр проходит поток газа, пыли и звезд, соединяющий спиральные рукава с противоположных сторон; огромные, величественные эллиптические галактики, содержащие более триллиона звезд и выросшие до таких размеров за счет поглощения других галактик и слияния с ними; изобилие карликовых эллиптических галактик — галактической мошки, где насчитывается каких-то несколько миллионов солнц; поразительное разнообразие загадочных неправильных форм, указывающих, что и в мире галактик случаются какие-то зловещие нарушения; галактики, обращающиеся одна вокруг другой столь близко, что их края изгибаются под действием взаимного тяготения, а иногда возникают вытянутые гравитацией длинные выбросы из газа и звезд, мосты между галактиками.

В некоторых скоплениях галактики подчиняются незатейливой сферической геометрии; здесь встречаются преимущественно эллиптические галактики, среди ко-

* По современным данным, сверхскопление в созвездии Девы насчитывает около 30 тысяч галактик, принадлежащих к 11 облакам. — Пер.

торых часто доминирует одна гигантская эллиптическая — предположительно галактический каннибал. Другие скопления, чья геометрия гораздо более беспорядочна, содержат значительно больше спиральных и неправильных галактик. Столкновения галактик искажают форму изначально сферического скопления и могут также привести к образованию спиральных и неправильных галактик из эллиптических. Форма и распространенность различных галактик способны поведать историю древних событий, происходивших в самом большом из возможных масштабов, историю, которую мы только начали читать.

Развитие высокопроизводительных компьютеров сделало возможным численное моделирование совокупного движения тысяч и десятков тысяч точек, каждая из которых представляет собой звезду, находящуюся под воздействием тяготения всех остальных точек. В некоторых случаях спиральные рукава самопроизвольно образуются в галактике, которая уже сплющилась в диск. Изредка они могут появиться в результате гравитационного взаимодействия двух сблизившихся галактик, каждая из которых содержит миллиарды звезд. Облака газа и пыли, рассеянные в таких галактиках, сталкиваются и нагреваются. Но звезды двух сталкивающихся галактик без труда избегают столкновения, как пули, пролетающие сквозь пчелиный рой, поскольку галактики в основном состоят из пустоты и звезды разделены огромными пустыми пространствами. Тем не менее форма галактик может очень сильно исказиться. Прямое столкновение способно опустошить галактики, разбросав составляющие их звезды по межгалактическому пространству. Когда небольшая галактика пролетает перпендикулярно через центр более крупной, возможно образование редкой и самой восхитительной среди неправильных галак-

тик — кольца поперечником тысячи световых лет, брошейного на бархате межгалактического пространства. Это своего рода всплеск в галактическом водоеме, временная конфигурация потревоженных звезд, галактика, у которой вырвана центральная часть.

Бесформенные кляксы неправильных галактик, рукава спиральных галактик, бублики кольцевых существуют лишь в течение нескольких кадров космического кино, а затем рассеиваются, часто с тем чтобы вскоре образоваться вновь. Наше восприятие галактик как скучных неподвижных объектов ошибочно. Это текучие образования из сотен миллиардов звездных компонентов. Подобно человеческому телу, состоящему из 100 триллионов клеток, галактики находятся в динамическом равновесии между синтезом и распадом и представляют собой нечто большее, нежели сумму их частей.

Среди галактик высок уровень самоубийств. Ближайшие примеры тому можно найти на расстоянии десятков или сотен миллионов световых лет. Это мощные источники рентгеновского, инфракрасного и радиоизлучения, чьи ядра имеют огромную светимость, испытывающую колебания в масштабе нескольких недель. У некоторых обнаруживаются направленные потоки излучения, выбросы протяженностью в тысячи световых лет, пылевые диски и другие признаки смятения. Это саморазрушающиеся галактики. В ядрах таких гигантских эллиптических галактик, как NGC 6251 и М87, возможно, находятся черные дыры массой от миллионов до миллиардов масс Солнца. Внутри М87 гудит нечто очень массивное, чрезвычайно плотное и крайне маленькое — размером меньше Солнечной системы. Отсюда и был сделан вывод о черной дыре. В миллиардах световых лет от нас есть еще более беспокойные объекты — квазары, которые могут представлять собой колоссальные взры-

вы молодых галактик, самые катастрофические события в истории Вселенной после Большого Взрыва.

Слово quasar (квазар) является аббревиатурой английского словосочетания quasi-stellar radio source (квазизвездный радиоисточник). Когда стало ясно, что не все из них в действительности мощные источники радиоизлучения, их стали называть QSO (quasi-stellar objects — квазизвездные объекты). Поскольку внешне они похожи на звезды, то первоначально их и считали звездами, находящимися в нашей Галактике. Однако спектроскопические измерения их красных смещений (см. ниже) указывают на колоссальную удаленность. Похоже, что они в полной мере участвуют в расширении Вселенной, а некоторые из них удаляются от нас со скоростью более 90 процентов скорости света. Чтобы оставаться видимыми на таком большом расстоянии, они должны обладать чрезвычайно высокой светимостью; есть среди них такие, мощность которых соответствует тысяче одновременно вспыхнувших сверхновых. Так же как и в случае с объектом Лебедь Х-1, их быстрые флуктуации указывают на то, что все их невероятно мощное излучение исходит из очень маленького объема, по размерам уступающего Солнечной системе. Столь высоким энерговыделением квазар должен быть обязан какому-то удивительному процессу. Среди предлагавшихся объяснений: 1) квазары — это гигантские пульсары, то есть быстро вращающиеся сверхмассивные ядра с вмороженным в них сильным магнитным полем; 2) квазары обязаны своим появлением тому, что среди миллионов звезд, плотно упакованных в ядре галактики, происходят многочисленные столкновения, которые срывают внешние слои и обнажают разогретые до миллиардов градусов недра массивных звезд; 3) связанная с предыдущей идея о том, что квазары — это галактики, в которых звезды располагаются столь тесно, что когда одна из них вспыхи-

вает как сверхновая, то она сдувает с соседних внешние слои, превращая их в сверхновые и вызывая что-то вроде звездной цепной реакции; 4) энергетика квазаров обеспечивается разрушительной аннигиляцией вещества с антивеществом, которое каким-то образом сохранилось в квазарах до наших дней; 5) квазары излучают за счет энергии, высвобождаемой, когда газ, пыль и звезды засасываются в ядре галактики в огромную черную дыру, которая сама образовалась в результате столкновений и слияний черных дыр меньшего размера; 6) квазары — это «белые дыры», обратная сторона черных дыр, через которые выбрасывается материя, затянутая многочисленными черными дырами в других частях Вселенной и даже в других вселенных.

Изучая квазары, мы столкнулись с трудноразрешимыми загадками. Но что бы ни было причиной взрывов, одна вещь кажется ясной: столь бурные процессы должны вызывать неописуемые разрушения. Каждый взрыв квазара, возможно, уничтожает миллионы миров, в том числе таких, где есть жизнь и разум, способный понять, что происходит. Изучение галактик открывает универсальный порядок и красоту. Но оно также показывает хаотическое буйство в масштабах, каких мы и вообразить не могли. То, что мы живем во Вселенной, которая допускает жизнь, достойно удивления. Но не менее удивительно другое: мы живем во Вселенной, которая уничтожает галактики, звезды, планеты. Вселенная, похоже, не благосклонна и не враждебна, а попросту безразлична к ничтожным созданиям вроде нас.

Даже такие благонравные галактики, как наш Млечный Путь, проявляют активность и выкидывают коленца. Радионаблюдения показывают, что два громадных облака водорода, каких хватило бы на создание миллионов солнц, выбрасываются из ядра Галактики, как будто там время от времени возникает некий взрывной процесс.

Орбитальные астрономические обсерватории обнаружили, что ядро Галактики является мощным источником гамма-излучения на частоте определенной спектральной линии, которая согласуется с представлением о скрытой там массивной черной дыре. Галактики, подобные Млечному Пути, могут воплощать собой период спокойной зрелости в непрерывной эволюционной последовательности, включающей и бурную юность — квазары и взрывающиеся галактики. Поскольку квазары очень далеки от нас, мы наблюдаем их в период молодости, какими они были миллиарды лет назад.

Звезды Млечного Пути движутся в величественном порядке. Шаровые скопления ныряют сквозь галактическую плоскость и выходят с противоположной стороны, где замедляют свой ход, поворачивают и устремляются обратно. Если бы мы могли проследить за движением отдельных звезд вблизи галактической плоскости, то увидели бы, что оно напоминает подпрыгивание воздушной кукурузы. Мы никогда не видели, чтобы галактики существенно изменяли форму, но лишь потому, что это занимает слишком много времени. Млечный Путь совершает один оборот за четверть миллиарда лет. Сумей мы ускорить вращение, то убедились бы, что наша Галактика — динамичная, почти живая сущность, чем-то напоминающая многоклеточный организм. Астрономический снимок любой галактики — это лишь стоп-кадр, фиксирующий один момент ее медленного движения и эволюции*. Внутренняя часть Галактики вращается как

* Это не совсем точно. Ближний край галактики на десятки тысяч световых лет ближе к нам, чем дальний; поэтому ближние части галактики мы видим такими, какими они стали на десятки тысяч лет позже, чем дальние. Однако типичные явления, связанные с динамикой галактик, занимают десятки миллионов лет, так что, назвав снимки галактик моментальными, мы допустили лишь незначительную ошибку. — Авт.

твердое тело. Но за ее пределами внешние области вращаются все медленнее и медленнее, подобно планетам, которые в своем движении вокруг Солнца подчиняются третьему закону Кеплера. Рукава стремятся все более тугой спиралью закрутиться вокруг ядра, в спиральном узоре скапливаются газ и пыль, их плотность растет, в результате здесь начинается образование молодых звезд, которые и очерчивают спиральный рисунок. Эти звезды светят около десяти миллионов лет, что составляет всего пять процентов от периода вращения Галактики. Но по мере того как звезды, очерчивающие спиральный рукав, сгорают, вслед за ними формируются новые светила и связанные с ними туманности, сохраняя неизменным спиральный рисунок. Звезды, оконтуривающие рукава, не переживают даже одного оборота Галактики; устойчив только спиральный узор.

Скорость движения любой звезды вокруг центра Галактики обычно не совпадает со скоростью движения спирального узора. Солнце многократно пересекало спиральные рукава за те двадцать витков вокруг Галактики, что оно совершило, двигаясь по своей орбите со скоростью 200 километров в секунду (примерно 700 тысяч километров в час). В среднем Солнце с планетами проводит сорок миллионов лет внутри спирального рукава, затем восемьдесят миллионов вовне, затем еще сорок миллионов внутри следующего и т. д. Спиральные рукава — это области, где поспевает новый урожай звезд, но где далеко не всегда обнаруживаются такие зрелые светила, как Солнце. В настоящее время мы живем между спиральными рукавами.

Периодические прохождения Солнечной системы через спиральные рукава вполне могут иметь важные для нас последствия. Около десяти миллионов лет назад

Солнце покинуло так называемый пояс Гоулда* в спиральном рукаве Ориона, который сейчас удален от нас на расстояние менее тысячи световых лет. (Внутри рукава Ориона находится рукав Стрельца, а снаружи — рукав Персея.) Когда Солнце проходит через спиральный рукав, возрастает вероятность погружения его в газовые туманности или межзвездные пылевые облака и встречи с объектами субзвездной массы. Выдвигалось предположение, будто крупнейшие ледниковые периоды, повторяющиеся на нашей планете примерно каждые сто миллионов лет, могут быть связаны с тем, что между Солнцем и Землей оказывалось межзвездное вещество. У. Непьер и С. Клуб высказали предположение, что многие спутники, астероиды, кометы и вещество колец вокруг планет Солнечной системы свободно перемещались в межзвездном пространстве, пока не были захвачены Солнцем, проходящим сквозь спиральный рукав Ориона. Это интересная идея, хотя, по всей видимости, маловероятная. Тем не менее она поддается проверке. Все, что нам нужно сделать, — добыть образец, скажем с Фобоса или с кометы, и проверить изотопный состав магния. Относительная распространенность изотопов магния (у всех них одинаковое количество протонов, но различное число нейтронов) зависит от последовательности событий звездного нуклеосинтеза, включая моменты взрывов близких сверхновых, каждый из которых порождает свой особый изотопный состав магния. В другом районе Галактики события разворачивались

* В середине XIX в. некоторые астрономы обратили внимание на то, что яркие звезды так распределены вдоль Млечного Пути, что образуют полосу, наклоненную к нему примерно на 20°. В 1879 г. аргентинский астроном Гоулд (Gould) детально исследовал эту звездную подсистему, которая получила название пояса Гоулда.Пер.

в иной последовательности, что должно было привести к иному соотношению изотопов магния.

Большой Взрыв и разбегание галактик были открыты благодаря хорошо известному явлению, называемому эффектом Доплера. Мы знакомы с ним из физики звука. Мимо нас с гудением проносится автомобиль. Внутри него водитель слышит постоянный звук с фиксированной высотой тона. А мы снаружи улавливаем характерное изменение в тональности гудка. Для нас звук меняется с высокого на низкий. Гоночная машина, покрывающая 200 километров в час, достигает почти одной шестой скорости звука. Звук — это последовательность волн в воздухе: гребень, впадина, гребень, впадина. Чем ближе друг к другу волны, тем больше частота или высота звука; чем дальше они, тем ниже тональность. Если автомобиль удаляется от нас, он растягивает звуковые волны, смещая их с нашей точки зрения в сторону низких частот и порождая всем нам хорошо знакомый характерный звук. Когда автомобиль к нам приближается, звуковые волны сжимаются, частота возрастает, и мы слышим пронзительный высокий сигнал. Зная нормальную частоту сигнала, издаваемого гудком неподвижного автомобиля, мы можем даже с завязанными глазами определить скорость автомобиля по изменению тональности гудка.

Свет — это тоже волна. Только в отличие от звука он прекрасно распространяется в вакууме. Эффект Доплера действует и в отношении света. Если бы по какой-то причине вместо звука автомобиль испускал бы вперед и назад лучи чистого желтого света, то частота излучения немного увеличивалась бы, когда автомобиль приближался, и немного уменьшалась бы при его удалении. При обычных скоростях этот эффект совершенно незаметен. Однако разгонись автомобиль до скорости, составляю-

щей заметную часть скорости света, мы увидели бы, как цвет огней приближающейся машины смещается в сторону высоких частот, то есть к синей части спектра, а удаляющейся — в сторону более низких частот, то есть к красному концу спектра. У объекта, приближающегося с очень высокой скоростью, цвета спектральных линий выглядят смещенными в голубую сторону. Спектральные линии объекта, уносящегося с очень высокой скоростью, испытывают красное смещение*. Красное смещение, наблюдаемое в спектрах далеких галактик и интерпретируемое как эффект Доплера, — это ключевой момент космологии.

В начале ХХ века строился крупнейший в мире телескоп, предназначенный для определения красных смещений далеких галактик. Строительство велось на горе Маунт-Вилсон, которая возвышалась над тогда еще чистым небом Лос-Анджелеса. Огромные детали телескопа приходилось затаскивать на вершину горы — делали это упряжки мулов. Молодой погонщик по имени Милтон Хьюмасон помогал доставлять на гору механическое и оптическое оборудование, а также ученых, инженеров и важных чинов. Он управлял колонной мулов, сидя верхом на лошади, а у него за спиной, положив передние лапы ему на плечи, все время стоял белый терьер. Хьюмасон был разнорабочим, из тех, что вечно жевали и сплевывали табак, картежником, завсегдатаем бильярдных и, как говорили в то время, дамским угодником. В школе он отучился всего восемь классов, но был сметлив, любознателен и очень заинтересовался оборудованием,




Поделиться с друзьями:


Дата добавления: 2015-05-06; Просмотров: 357; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.036 сек.