Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

От переводчика 29 страница




** Сложные проценты — способ расчета дохода на вложенный капитал, при котором начисляемые проценты периодически пополняют сумму вклада. — Ред.

кана, и выброшенное облако пепла покрыло окружающую саванну. В 1979 году палеонтолог Мэри Лики обнаружила в этом пепле следы ног — следы, которые, как она считает, принадлежит древнему гоминиду, возможно, предку всех людей, живущих сегодня на Земле. А в 380 000 километров на плоской, сухой равнине, которую люди в порыве оптимизма назвали Морем Спокойствия, есть другой отпечаток, оставленный первым человеком, ступившим на поверхность другого мира. Мы далеко забрались за прошедшие 3,6 миллиона лет. И за 4,6 миллиарда. И за 15 миллиардов.

Мы воплощаем собой Космос, достигший самосознания. Мы начали пристально вглядываться в наше происхождение: звездное вещество, размышляющее о звездах; упорядоченные системы из десяти миллиардов миллиардов атомов, изучающие эволюцию атомов, прослеживающие долгий путь, который, по крайней мере здесь, привел к появлению сознания. Мы привязаны к нашему виду и к нашей планете. Мы отвечаем за Землю. Мы обязаны выжить не только ради самих себя, но также ради того древнего и огромного Космоса, который нас породил.

 

 

ПРИЛОЖЕНИЕ 1. Приведение к абсурду, или Квадратный корень из двух

 

Найденное пифагорейцами доказательство иррациональности квадратного корня из двух опирается на аргумент, называемый rеductio ad absurdum - приведение к абсурду: мы принимаем за истину некоторое утверждение, выводим следствия из него, наталкиваемся на противоречие и тем самым устанавливаем ложность посылки. В качестве современного примера рассмотрим афоризм великого физика ХХ столетия Нильса Бора: «Противоположность любой глубокой идеи является другой глубокой идеей». Если это утверждение истинно, у него могут найтись довольно опасные следствия. Представьте, например, отрицание золотого правила*, заповеди, запрещающей лгать, или заповеди «Не убий». Поэтому давайте разберемся, является ли сам афоризм Бора глубокой идеей. Если это так, то противоположный ему тезис: «Противоположность любой глубокой идеи не является другой глубокой идеей» -тоже должен быть истинным. Тем самым мы достигли reductio ad absurdum. Поскольку обратное утверждение ложно, данный афоризм не должен нас сковывать, ибо в соответствии с ним же самим он не является глубокой идеей**.

* Золотое правило (оно же категорический императив) - нравственный закон, гласящий: поступай с другими так, как тебе хотелось бы, чтобы поступали с тобой. -Ред.

** Здесь автор некорректно анализирует высказывание Нильса Бора. Саган неявно отождестляет глубину идеи с ее истинностью, тогда как нам известно немало глубоких суждений, об истинности которых нельзя сказать ничего определенного (например, утверждение о существовании внеземных

Мы приведем современную версию доказательства иррациональности квадратного корня из двух, опирающуюся на reductio ad absurdum и простые алгебраические выкладки, а не чисто геометрическое доказательство, открытое пифагорейцами. Стиль доказательства и способ размышления не менее интересны, чем получаемый результат.

Рассмотрим квадрат со стороной, равной единице (одному сантиметру, одному дюйму, одному световому году - не суть важно). Диагональ ВС делит квадрат на два прямоугольных треугольника. В таких прямоугольных треугольниках, согласно теореме Пифагора, 12 + 12 = х 2. Поскольку 12 +12 = 1 +1 = 2, то х 2 = 2, и мы можем записать, что х = √2, то есть корню квадратному из двух. Предположим, что √2 является рациональным числом, то есть √2 = p/q, где p и q - целые числа. Они могут быть любыми, сколь угодно большими, но обязательно целыми числами. Мы, конечно, потребуем,

цивилизаций). Но главное - высказывание Бора вырвано из контекста и искажено. Полностью цитата звучит так: «Противоположностью правильного утверждения является ложное утверждение. Но противоположность глубокой истины вполне может оказаться другой глубокой истиной» (The opposite of a correct statement is a false statement. But the opposite of a profound truth may well be another profound truth). Эту формулировку невозможно опровергнуть таким простым способом, как это делает Саган. Во-первых, понятие противоположности гораздо шире отрицания. Например, отрицанием суждения «эгоизм - полезная черта характера» будет утверждение «эгоизм -вредная черта характера». Безусловно, это отрицание является одновременно и противоположным суждением. Но вот суждение «альтруизм - полезная черта характера» хотя и противоположно исходному суждению, отрицанием его не является. И между прочим, все эти утверждения можно назвать глубокими. Во-вторых, согласно Бору, если бы даже суждение, противоположное его афоризму, оказалось ложным, это вовсе не было бы опровержением. Просто это говорило бы о том, что данный афоризм не является глубокой истиной, а претендует лишь на роль правильного суждения, отрицание которого ложно. В-третьих, в оригинальном высказывании Бора не говорится, что противоположность любой глубокой истины обязательно является глубокой истиной. Утверждается лишь, что это возможно. Поэтому вполне правомерно допустить, что само суждение Бора является глубокой истиной, но его отрицание таковой не является. - Пер.

 

 

чтобы у них не было общих делителей. Если мы, например, заявляем, что √2 = 14/10, то, безусловно, можем сократить эту дробь на множитель 2 и записать: p = 7, q = 5 вместо p = 14, q = 10. Будем далее считать, что у числителя и знаменателя сокращены все общие множители. Для выбора значений p и q y нас остается бесконечное число вариантов. Возведя в квадрат равенство √2 = p/q, получим: 2 = р 2/ q 2, или после домножения обеих частей на q 2:

p 2 = 2q 2. (1)

Таким образом, р 2 представляет собой некоторое число, умноженное на 2. Однако квадрат любого нечетного числа является нечетным числом (12 = 1,32 = 9, 52 = 25, 72 = 49 и т. д.). Получается, что само число ρ должно быть четным, то есть можно записать ρ = 2s, где s - некоторое целое число. Подставив его в уравнение (1), находим:

p 2 = (2 s)2 = 4 s 2 = 2 q 2.

Деление обеих частей последнего равенства на 2 дает: g 2 = 2 s 2. То есть q 2 тоже является целым числом, и, опираясь на тот же аргумент, что был использован для р, мы заключаем, что q тоже является четным. Но если числа p и q оба делятся на два, значит, они содержат несокращенный общий делитель, что противоречит нашему предположению. Reductio ad absurdum. Но в чем состояло предположение? Доказательство не может запретить нам сократить общие множители, разрешив использовать 14/10, но запретив 7/5. Поэтому ошибочным должно быть начальное предположение: p и q не могут быть целыми числами, a √2 является иррациональным числом. В действительности √2 = 1,4142135...

Насколько ошеломляющее и неожиданное заключение! Какое элегантное доказательство! Но пифагорейцы считали необходимым скрывать это великое открытие.

 

 

ПРИЛОЖЕНИЕ 2. Пять пифагоровых* тел

 

Правильный многоугольник - это двумерная фигура с определенным числом л одинаковых сторон. В случае л = 3 получается равносторонний треугольник, при η = 4 - квадрат, при л = 5 - правильный пятиугольник и т. д. Многогранник - это трехмерная фигура, все стороны которой являются многоугольниками. Например, куб имеет шесть квадратных граней. Правильным называют многогранник, все грани которого представляют собой одинаковые правильные многоугольники, причем в каждой вершине сходится одинаковое число граней. Для работ пифагорейцев и Кеплера фундаментальное значение имеет факт, что существует пять, и только пять, правильных тел. Простейшее доказательство этого факта можно получить из открытого значительно позже Декартом и Леонардом Эйлером соотношения, связывающего число граней F, число ребер Е и число вершин Ив любом многограннике:

V-E+F=2. (2)

Так, у куба 6 граней (F= 6) и 8 вершин (V = 8). Отсюда получаем: 8 - Ε + 6 = 2; 14 - Е = 2 и Ε = 12. Уравнение (2) предсказывает, что у куба 12 ребер, и это соответствует действительности. Простое геометрическое доказательство уравнения (2) можно найти в книге Куранта и Роббинса «Что такое математика?»**. Пользуясь уравнением (2), легко доказать, что существует всего пять правильных тел.

* В русскоязычной литературе принято говорить о Платоновых телах. - Пер. ** Курант Р., Роббинс Г. Что такое математика? Элементарный очерк идей и методов. РХД, 2001.

Каждое ребро правильного многогранника является общей стороной двух прилегающих друг к другу граней. Возвращаясь к примеру с кубом: каждое ребро - это граница между двумя квадратами. Если мы подсчитаем все стороны всех граней многогранника nF, то каждое ребро окажется сосчитанным дважды, то есть

nF = 2 E (3)

Обозначим r число ребер, которые сходятся в одной вершине. Для куба r = 3. Кроме того, каждое ребро соединяет две вершины. Если мы подсчитаем концы всех ребер /V, то вновь сосчитаем каждую вершину дважды, то есть

rV = 2E (4)

Подставляя выражения для V и F из уравнений (3) и (4) в уравнение (2), получаем:

 

 

Деление обеих частей уравнения на 2Е дает:

 

(5)

Мы знаем, что значение л не может быть меньше 3, поскольку треугольник является простейшим многоугольником. Нам также известно, что r не может быть меньше 3, поскольку в каждой вершине многогранника сходится не меньше трех граней. Если n и r одновременно будут больше 3, то с учетом того, что они являются целыми числами, левая часть уравнения (5) окажется меньше либо равна 1/2, и ни при каком значении Е оно не будет превращаться в равенство. Таким образом, осуществив reductio ad absurdum, мы доказали, что либо n =3 и r ≥ 3, либо r = 3 и n ≥ 3.

Если n = 3, уравнение (5) принимает вид

(1/3) + (1/ r) = (1/2) + (1/ Е) или

 

(6)

В данном случае г может принимать только значения 3, 4 и 5. (При л, равном и большем 6, уравнение не имеет решений.) Значения n = 3, r = 3 соответствуют многограннику, у которого в каждой вершине сходится по три треугольника. Согласно уравнению (6) он имеет 6 ребер; согласно уравнению (3) у него 4 грани; согласно уравнению (4) - 4 вершины. Очевидно, что это пирамида, или тетраэдр. При n = 3, r = 4 получаем восьмигранник, у которого в каждой вершине сходится по четыре треугольные грани, - октаэдр. Значения n = 3, r = 5 соответствуют икосаэдру - многограннику с двадцатью треугольными гранями, в каждой вершине которого сходится по пять треугольников.

Если r = 3, уравнение (5) приобретает вид

 

 

и, повторив аналогичные рассуждения, мы получим, что л может принимать только значения 3, 4 и 5. При n = 3 вновь получается тетраэдр. Значению n = 4 соответствует многогранник, составленный из 6 квадратов, - куб, а при л = 5 результатом будет 12-гранник, состоящий из пятиугольников, - додекаэдр.

Другие сочетания целых чисел не подходят в качестве значений л и л, а значит, существует только 5 правильных многогранников*. Этот вывод, полученный в результате красивых абстрактных математических рассуждений, оказал, как вы уже знаете, весьма глубокое воздействие на практические дела людей.

* Приведенные рассуждения доказывают лишь то, что правильных многогранников может быть не больше пяти. Из них еще не следует, что хоть один из многогранников, соответствующих допустимым значениям n и r, существует. То, что для всех пар n и r действительно можно построить правильный многогранник, - замечательный факт. Ведь вполне могло бы оказаться, что при каком-нибудь из сочетаний n и r грани не сходятся друг с другом. На этом факте обычно не акцентируют внимание, так как многогранники были известны с глубокой древности и никто не сомневался в их существовании. - Пер.

 

 




Поделиться с друзьями:


Дата добавления: 2015-05-06; Просмотров: 329; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.023 сек.