Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Микроэлектроника




Элементная база электроники развивается непрерывно возрастающими темпами. Развитие изделий электроники от поколения к поколению идет в направлении их функционального усложнения, повышения надежности и срока службы, уменьшения габаритных размеров, массы, стоимости и потребляемой энергии, упрощения технологии и улучшения параметров электронной аппаратуры. При рассмотрении этапов развития электроники выделяют следующие поколения элементной базы:

-дискретная электроника электровакуумных приборов,

-дискретная электроника полупроводниковых приборов,

- интегральная электроника микросхем (микроэлектроника),

-интегральная электроника функциональных микроэлектронных устройств (функциональная микроэлектроника)

Каждое из приведенных поколений, появившись в определенный момент времени, продолжает совершенствоваться в наиболее оправданных направлениях. Широкое применение интегральных микросхем (ИМС) – основное направление развития современной электроники. Это связано со значительным усложнением требований и задач, решаемых электронной аппаратурой, что привело к росту числа элементов в ней. Число элементов постоянно увеличивается. Разрабатываемые сейчас сложные системы содержат десятки миллионов элементов. В этих условиях исключительно важное значение приобретают проблемы повышения надежности аппаратуры и ее элементов, миниатюризация электронных компонентов и комплексной миниатюризации аппаратуры. Все эти проблемы успешно решает микроэлектроника. Развитие микроэлектроники как самостоятельной науки стало возможным благодаря использованию богатого опыта и базы промышленности, выпускающей дискретные полупроводниковые приборы. Однако по мере развития полупроводниковой электроники выяснились серьезные ограничения применения электронных явлений и систем на их основе. Поэтому микроэлектроника продолжает продвигаться быстрыми темпами как в направлении совершенствования полупроводниковой интегральной технологии, так и в направлении использования новых физических явлений. Изделия микроэлектроники: интегральные микросхемы различной степеней интеграции, микросборки, микропроцессоры, мини- и микро-ЭВМ – позволили осуществить проектирование и промышленное производство функционально сложной радио- и вычислительной аппаратуры, отличающейся от аппаратуры предыдущих поколений лучшими параметрами, более высокими надежностью и сроком службы, меньшими потребляемой энергией и стоимостью. Аппаратура на базе изделий микроэлектроники находит широкое применение во всех сферах деятельности человека. Созданию систем автоматического проектирования, промышленных роботов, автоматизированных и автоматических производственных линий, средств связи и многому другому способствует микроэлектроника. Разработка любых ИМС представляет собой довольно сложный процесс, требующий решения разнообразных научно-технических проблем. Вопросы выбора конкретного технологического воплощения ИМС решаются с учетом особенностей разрабатываемой схемы, возможностей и ограничений, присущих различным способам изготовления, а также технико-экономического обоснования целесообразности массового производства. Выделяют два основных класса микросхем – полупроводниковые и гибридные. Оба эти класса могут иметь различные варианты структур, каждый из которых с точки зрения проектирования и изготовления обладает определенными преимуществами и недостатками. По своим конструктивным и электрическим характеристикам полупроводниковые и гибридные интегральные схемы дополняют друг друга и могут одновременно применяться в одних и тех же радиоэлектронных комплексах. Гибридные микросхемы заняли доминирующее положение в схемах с большими электрическими мощностями, а также в устройствах СВЧ, в которых можно применять как толстопленочную технологию, не требующую жестких допусков и высокой точности нанесения и обработки пленок, так и тонкопленочную технологию для обеспечения нанесения пленочных элементов очень малых размеров. При массовом выпуске различных ИМС малой мощности, особенно предназначенных для ЭВМ, используются, в основном, полупроводниковые ИМС.

ЦИФРОВЫЕ ИНТЕГРАЛЬНЫЕ МИКРОСХЕМЫ.

Интегральная микросхема – это микроэлектронное изделие выполняющее определенную функцию преобразования и обработки сигнала и имеющее не менее пяти элементов (транзисторов, диодов, резисторов, конденсаторов), которые нераздельно связаны и электрически соединены между собой так, что устройство рассматривается как единое целое. Высокая надежность и качество в сочетании с малыми размерами, массой и низкой стоимостью интегральных микросхем обеспечили их широкое применение во многих отраслях народного хозяйства. По конструктивно-технологическим признакам различают пленочные, полупроводниковые и гибридные микросхемы. Пленочные микросхемы изготавливают посредством послойного нанесения на диэлектрическое основание (подложку) пленок различных материалов с одновременным формированием транзисторов, диодов и т.п. Пленочные микросхемы делятся на тонкопленочные (толщина пленки до 1мкм) и толстопленочные. Полупроводниковая интегральная микросхема – это интегральная микросхема, все элементы и межэлектродные соединения которой выполнены в объеме и на поверхности проводника. При изготовлении полупроводниковых интегральных микросхем обычно используют планарную технологию. Активные и пассивные элементы полупроводниковой интегральной микросхемы избирательно формируют в одном монокристалле полупроводника. Соединение элементов между собой в полупроводниковой интегральной микросхеме может быть выполнено как в объеме, так и на поверхности монокристалла полупроводника путем создания на окисленной поверхности полупроводника токоведущих дорожек, например, методом вакуумного напыления металла. В качестве конденсаторов в микросхемах используют обратно смещенные p-n-переходы или конденсаторные структуры Si-SiO2-металл. Роль резисторов выполняют участки поверхности полупроводникового кристалла или p-n-переход, смещенный в прямом или обратном направлении, а также канал МДП-транзисторов. В интегральной микросхеме не всегда можно указать границу между отдельными элементами. Например, вывод конденсатора может одновременно являться электродом конденсатора. Из-за малых межэлектродных расстояний и наличия общего для всех элементов схемы кристалла (подложки) в микросхемах создаются достаточно сложные паразитные связи, а так же появляются паразитные элементы, которые, как правило, ухудшают все параметры микросхемы, как функционального узла радиоэлектронной аппаратуры.

В заключение поговорим о микропроцессорных системах как конечный, на данное время, этап развития электроники.




Поделиться с друзьями:


Дата добавления: 2015-05-06; Просмотров: 983; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.009 сек.