Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Влияние хрома на свойства высоколегированных сталей




Классификация высоколегированных сталей и сплавов

ВЫСОКОЛЕГИРОВАННЫЕ СТАЛИ И СПЛАВЫ

 

Согласно ГОСТ 5632-72 к высоколегированным сталям относят сплавы, в которых содержание железа составляет более 45 %, суммарная массовая доля легирующих элементов не менее 10 % при массовой доле одного из элементов не менее 8 %.

v В зависимости от основных свойств стали и сплавы подразделяют на группы:

I - Коррозионностойкие (нержавеющие) стали и сплавы, обладающие стойкостью против электрохимической и химической коррозии (атмосферной, почвенной, щелочной, кислотной, солевой), межкристаллитной коррозии, коррозии под напряжением и др.

Основным легирующем элементов данных сталей является хром с содержанием более 12 %. Для сталей стойких против атмосферной коррозии содержание хрома увеличивается до 15 %, для кислотостойких сталей более 16 %.

II - Жаростойкие (окалиностойкие) стали и сплавы, обладающие стойкостью против химического разрушения поверхности в газовых средах при температурах выше 550 °С, работающие в ненагруженном или слабонагруженном состоянии.

Стали, обладающие жаростойкостью до 900 °С содержат до 18 % хрома (12Х17, 08Х17Т, 10Х13СЮ и др.), до 1100 °С ­- более 25 % хрома (15Х28, 15Х25Т).

III - Жаропрочные стали и сплавы, способные работать в нагруженном состоянии при высоких температурах в течение определенного времени и обладающие при этом достаточной жаростойкостью.

Например, жаропрочные стали, работающие при температурах:

· 585…610 °С - 18Х12ВМБФР, 15Х12ВНМФ и др.

· до 650 °С -12Х18Н9Т, 12Х18Н10Т и др.

· до 800 °С - 10Х23Н18, 12Х25Н16 и др.

v В зависимости от основной структуры, полученной при охлаждении сталей на воздухе после высокотемпературного нагрева (в нормализованном состоянии), стали подразделяют на классы:

* Мартенситный - стали с основной структурой мартенсита (20Х13, 30Х13, 40Х13, 15Х11МФ, 18Х11МНФБ, 20Х12ВНМФ и др.).

* Мартенсито-ферритный - стали, содержащие в структуре кроме мартенсита, не менее 10 % феррита (12Х13, 14Х17Н2, 09Х16Н4Б, 15Х12ВНМФ, 18Х12ВМБФР и др.).

* Ферритный - стали, имеющие структуру феррита, без α ®γ превращений (08Х13, 12Х17, 08Х17Т, 15Х25Т, 15Х28 и др.).

* Аустенито-мартенситный - стали, имеющие структуру аустенита и мартенсита, количество которых можно изменять в широких пределах (07Х16Н6, 08Х17Н5М3, 09Х15Н8Ю, 09Х17Н7Ю, 20Х13Н4Г9 и др.).

* Аустенито-ферритный - стали, имеющие структуру аустенита и феррита, где феррита более 10 % (08Х18Г8Н2Т, 08Х21Н6М2Т, 20Х23Н13, 08Х22Н6Т и др.).

* Аустенитный - стали, имеющие структуру аустенита (08Х18Н10, 08Х18Н10Т, 12Х18Н9, 17Х18Н9, 10Х14Г14Н4Т, 10Х14АГ15, 03Х17Н14М3, 07Х21Г7АН5, 08Х10Н20Т2 и др.).

v В зависимости от системы легирования высоколегированные стали делятся на:

- хромистые,

- хромоникелевые,

- хромомарганцевые,

- хромоникелевомарганцевые.

Основными легирующими элементами высоколегированных сталей являются хром и никель. Они определяют структуру и свойства сталей. Также в качестве легирующих элементов применяются кремний, вольфрам, молибден, никель, титан, бор и др. они способствуют повышению прочности, жаропрочности, стойкости против коррозии.

v Относительно системы упрочнения высоколегированные стали делятся на стали:

- с карбидным упрочнением,

­- с боридным упрочнением,

- с интерметаллидным упрочнением.

Стали, содержащие углерода в пределах 0,2…1,0 %, имеют карбидное упрочнение. Этот тип упрочнения характерен в основном для жаропрочных и жаростойких сталей. Такое упрочнение достигается при выдержке стали в интервале температур 600…650 °С, в результате выделения сложных карбидов железа, хрома, ниобия, ванадия и вольфрама, типа Me23C6, Me6C, Me2C и др.

Никельсодержащие стали, легированные титаном в пределах 1,0…3,5 % и алюминием до 6% упрочняются вследствие образования при температуре 650…850 °С интерметаллидных фаз типа Ni3(Ti,Al), (Ni,Fe)2Ti и др.

Упрочнении аустенита боридных сталей достигается в результате образования боридов железа, хрома, ниобия, углерода, молибдена и вольфрама.

В связи с тем, что стали в большинстве случаев содержат несколько легирующих элементов, упрочнение их бывает чаще всего комплексным.

v В зависимости от химического состава сплавы подразделяют на классы по основному составляющему элементу:

- сплавы на железоникелевой основе;

- сплавы на никелевой основе.

К сплавам на железоникелевой основе отнесены сплавы, основная структура которых является твердым раствором хрома и других легирующих элементов в железоникелевой основе (сумма никеля и железа более 65 % при приблизительном отношении никеля к железу 1:1,5).

К сплавам на никелевой основе отнесены сплавы, основная структура которых является твердым раствором хрома и других легирующих элементов в никелевой основе (содержания никеля не менее 50%).

 

Хром – основной легирующий элемент для получения коррозионностойких, жаропрочных сталей и жаростойких сталей.

В коррозионностойких и кислотостойких сталях хром играет двоякую роль. При его содержании более 12 % резко повышается электрохимический потенциал стали, сталь «облагораживается» и становится более устойчивой в растворах электролитов. В то же время хром способствует образованию на поверхности металла плотной и достаточно прочной оксидной плёнки, защищающий металл от воздействия коррозионно-активной среды. Эта же стойкая плёнка хрома защищает сталь от окисления при высоких температурах – повышает её жаростойкость. Таким образом, высокохромистые стали оказываются стойкими против химической и электрохимической коррозии в окислительных средах.

Наряду с высокой коррозионной стойкостью стали, содержащие 12 % Cr, имеют высокие прочность и жаропрочность (значительно выше, чем у низко- и среднелегированных хромистых и хромомолибденовых сталей).

При высоких механических и антикоррозионных свойствах высокохромистые стали имеют пониженные технологические свойства, в том числе пониженную свариваемость. Это связано с особенностями фазового состояния высокохромистых сталей и особенностями структурных и фазовых превращений, происходящих при нагреве и охлаждении.


ВЫСОКОХРОМИСТЫЕ СТАЛИ МАРТЕНСИТНОГО КЛАССА




Поделиться с друзьями:


Дата добавления: 2015-05-06; Просмотров: 3713; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.009 сек.