Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Научная картина мира. 1 страница. Ее авторы, Музафер Шериф и Карл Ховланд (основной вклад в создание теории внес Музафер Шериф)




ТЕОРИЯ СОЦИАЛЬНЫХ СУЖДЕНИЙ (РЕШЕНИЙ)

 

Ее авторы, Музафер Шериф и Карл Ховланд (основной вклад в создание теории внес Музафер Шериф). Он исходит из того, что люди осознают, во-первых, наличие у себя определенных установок, а во-вторых, точно знают, какие они, что собой представляют. Поэтому человек строго контролирует имеющиеся у него уста­новки, сам определяя и решая, какие изменения в них можно допустить, а какие нет. Из этого следует, что любое сообщение, преследующее цель убедить или переубедить в чем-то, сравнивается, сопоставляется индивидом с имеющимися у него установками и убеждениями.

Если сообщение очень близко по смыслу, хоть и не идентично взглядам человека, то оно попадает в сферу принятия и ассимилируется. Человек просто не замечает различий между своей установкой и новой информацией,по­этому его установка остается неизмененной.

С другой стороны, сообщение, ко­торое заметно расходится со взгляд ом индивида, попадает в сферу отвержения и не будет им принято, и в этом случае изменения установки не про­изойдет.

И наконец,те суждения, в отношении которых у человека нет уверенности (они окажутся между «Да» и «Нет»), попадут в сферу неопределенности. В соответствии с теорией социальных суждений, изменение установки человека возможно лишь тогда, когда новая информация попадает в сферу неопределенности .

Элементы процесса убеждения.

Ховланд и его коллеги выделили следующие составляющие этого процесса:

1. Агент влияния (источник сообщения).

2. Само сообщение.

3. Условия, в которых передается сообщение (контекст).

4. Реципиент, то есть тот индивид, которому предназначено сообщение.

Характеристики источника сообщения, способствующие убеждению: доверие,привлекательность, обаяние, сходство с реципиентом.

Характеристика убеждающего сообщения: апелляция к эмоциям; аргументирование - количество и качество аргументов, способ аргументирования (доказательства), порядок изложения аргументов, форма их изложения.

Реципиент: сте­пень податливости влиянию, или мера внушаемости, уровень интеллекта, пол, самооценка.


Научная картина мира — (одно из основополагающих понятий в естествознании) особая форма систематизации знаний, качественное обобщение и мировоззренческий синтез различных научных теорий. Будучи целостной системой представлений об общих свойствах и закономерностях объективного мира, научная картина мира существует как сложная структура, включающая в себя в качестве составных частей общенаучную картину мира и картины мира отдельных наук (физическая, биологическая, геологическая и т. п.). Картины мира отдельных наук, в свою очередь, включают в себя соответствующие многочисленные концепции — определённые способы понимания и трактовки каких-либо предметов, явлений и процессов объективного мира, существующие в каждой отдельной науке.

Научная картина мира — система представлений человека о свойствах и закономерностях действительности (реально существующего мира), построенная в результате обобщения и синтеза научных понятий и принципов. Использует научный язык для обозначения объектов и явлений материи. Это множество теорий в совокупности описывающих известный человеку природный мир, целостная система представлений об общих принципах и законах устройства мироздания. Картина мира - системное образование, поэтому её изменение нельзя свести ни к какому единичному (пусть и самому крупному и радикальному) открытию. Речь обычно идет о целой серии взаимосвязанных открытий (в главных фундаментальных науках), которые почти всегда сопровождаются радикальной перестройкой метода исследования, а также значительными изменениями в самих нормах и идеалах научности.

• общенаучную картину мира
• естественнонаучную картину мира и социально-научную картину мира
• специальную (частную, локальную) научную картину мира

 

3. Методы эмпирического уровня познания. Понятие факта.

Научный метод - это:
• путь исследования, познания;
• форма теоретического и практического освоения действительности, исходящего из закономерностей движения изучаемого объекта;
• система регулятивных принципов преобразующей, практической или познавательной, теоретической деятельности;
• в философии - система положений, принципов, категорий и законов.

Классификация общенаучных методов тесно связана с понятием уровней познания. Различают два уровня научного познания: эмпирический и теоретический. Одни общенаучные методы применяются только на эмпирическом уровне познания (наблюдение, эксперимент, измерение), другие - только на теоретическом (идеализация, формализация), а некоторые (моделирование) - как на эмпирическом, так и на теоретическом уровнях.

Эмпирический уровень познания характеризуется непосредственным исследованием реально существующих, чувственно воспринимаемых объектов. На этом уровне происходит процесс накопления информации об исследуемых объектах, осуществляется первичная систематизация получаемых фактических данных в виде таблиц, схем, графиков и т. п.

Наблюдение - метод эмпирического познания, позволяющий получить некоторую первичную информацию об объектах окружающей действительности.

По способу проведения наблюдения могут быть:
• непосредственными - те или иные свойства, стороны объекта отражаются, воспринимаются органами чувств человека;
• опосредованными - проводятся с использованием тех или иных технических средств (микроскопов, телескопов);
• косвенными - обязательно основываются на некоторых теоретических положениях, устанавливающих определенную связь (например, в виде математически выраженной функциональной зависимости) между наблюдаемыми и ненаблюдаемыми явлениями; используются в ядерной физике.

Эксперимент - метод эмпирического исследования, предполагающий активное, целенаправленное и строгоконтролируемое воздействие исследователя на изучаемый объект для выявления и изучения тех или иных его сторон, свойств, связей.

Эксперимент включает в себя другие методы эмпирического исследования (наблюдение, измерение) и в то же время обладает рядом важных, только присущих ему особенностей:
• в ходе эксперимента объект может быть поставлен в некоторые искусственные, в частности, экстремальные условия (например, изучаться при сверхвысоких температурах, при чрезвычайно высоких давлениях и т. п.);
• экспериментатор может вмешиваться в естественное течение процессов;
• условия эксперимента повторяются столько раз, сколько это необходимо для получения достоверных результатов.

В зависимости от характера проблем, решаемых в ходе экспериментов, последние обычно подразделяются на исследовательские и проверочные.

1. Исследовательские эксперименты дают возможность обнаружить у объекта новые, неизвестные свойства. Примером может служить обнаружение ядра атома Э. Резерфордом при бомбардировке альфа-частицами золотой фольги.

2. Проверочные эксперименты служат для проверки, подтверждения тех или иных теоретических построений. Так, существование целого ряда элементарных частиц было вначале предсказано теоретически, и лишь позднее они были обнаружены экспериментальным путем.

Исходя из методики проведения и получаемых результатов, эксперименты подразделяются на качественные и количественные.

1. Качественные эксперименты носят поисковый характер и не приводят к получению каких-либо количественных соотношений. Они позволяют лишь выявить действие тех или иных факторов на изучаемое явление.

2. Количественные эксперименты направлены на установление точных количественных зависимостей в исследуемом явлении. В процессе исследований обычно качественный эксперимент предваряет количественный.

Измерение - метод эмпирического познания, заключающийся в определении количественных значений тех или иных свойств, сторон изучаемого объекта, явления с помощью специальных технических устройств. Результат измерения получается в виде некоторого числа единиц измерения.

 

4. Методы теоретического познания. Гипотеза и теория.

На теоретическом уровне познания происходит раскрытие наиболее глубоких, существенных сторон, связей, закономерностей, присущих изучаемым объектам и явлениям. Результаты теоретического познания - гипотезы, теории, законы.

Гипотеза - форма знания, содержащая предположение, которое сформулировано на основе ряда фактов, а его истинное значение неопределенно и нуждается в доказательстве. Гипотезы носят вероятностный характер. В ходе доказательства одни гипотезы становятся теорией, а другие отбрасываются, превращаются в заблуждения. Новые гипотезы выдвигаются на основе проверок старых, даже если они были отрицательными.

Теория - наиболее развитая форма научного знания, дающая целостное отображение закономерных и существенных связей определенной области действительности. Основные элементы структуры теории: исходные основания, фундаментальные принципы, понятия, законы, аксиомы и т.п. Ключевой элемент теории - закон. Теория - система законов.
Функции теории: синтетическая, объяснительная, методологическая, предсказательная, практическая. Синтетическая - осуществить сбор знаний о проблеме. Объяснительная - объяснить проблему исходя из современного уровня знаний о мире. Методологическая - выработать метод решения проблемы. Предсказательная - предсказать события которые могут произойти исходя из начальных условий которые даны. Практическая - использовать новые знания для улучшения качества жизни людей.

Абстрагирование - метод теоретического познания, заключающийся в мысленном отвлечении от несущественных свойств, связей, отношений предметов и одновременном выделении, фиксировании одной или нескольких интересующих исследователя сторон этих предметов.
Результат, получаемый в процессе абстрагирования - абстракция.

Идеализация - метод теоретического познания, заключающийся в мысленном внесении определенных изменений в изучаемый объект в соответствии с целями исследований.

Целесообразность использования идеализации как метода исследований определяется следующими положениями:
• когда подлежащие исследованию реальные объекты достаточно сложны для имеющихся средств теоретического, в частности математического;
• когда необходимо исключать некоторые свойства, связи исследуемого объекта, без которых он существовать не может, но который затеняет сущность протекающих в нем процессов. Сложный объект представляется как бы в "очищенном" виде, что облегчает его изучение;
• когда исключаемые из рассмотрения свойства, стороны, связи изучаемого объекта не влияют в рамках данного исследования на его сущность.

Формализация - метод теоретического познания, заключающийся в использовании специальной символики, позволяющей отвлечься от изучения реальных объектов, от содержания описывающих их теоретических положений и оперировать вместо этого некоторым множеством символов (знаков). Например, широко используемые в науке математические описания различных объектов, явлений. В результате создается формальная знаковая система в виде определенного искусственного языка.
Индукция - есть метод теоретического познания, основывающийся на формально-логическом умозаключении, когда на основании знания части предметов класса делается вывод о классе в целом.

Дедукция - метод теоретического исследования, когда вывод о некотором элементе множества делается на основании знания общих свойств всего множества

 

 

5. Основные этапы развития естествознания.

Проблема генезиса науки. Накопление рациональных знаний о природе в системе первобытного сознания. Мифология и магия. Развитие протонаучных знаний в цивилизациях древнего Востока.

Возникновение науки в древнегреческой культуре. Античная математика: общая характеристика. Проблема субстанции в древнегреческой науке. Атомизм как первая научная теоретико-методологическая программа. Математическая программа в античной науке. Физика, механика и космология Аристотеля. Геоцентрическая системаПтолемея и завершение создания первой научной картины мира. Упадок античной науки.

Естествознание в эпоху Средневековья. Продолжение накопления в период Средневековья эмпирических фактов и обобщений, технического опыта и мастерства. Наука на средневековом Востоке. Сохранение достижений античной науки в университетах Западной Европы. Физические идеи средневековья. Химия и алхимия, астрономия и астрология в средневековье. Средневековая математика: общая характеристика.

Эпоха Возрождения и начало коренных преобразований в способе познания природы. Мировоззренческая революция эпохи Возрождения. Правовые идеи Возрождения. Процесс отпочкования естественнонаучных знаний от философии и зарождение аналитического исследования природы. Формирование экспериментальногометода. Гелиоцентрическая система мира Коперника как начало формирования классического естествознания. Мировоззренческое и методологическое значение труда Коперника Об обращении небесных сфер (1543).

Научная революция в естествознании ХVI-ХVIIвв. Значение работ Кеплера, Галилея и Ньютона в формировании классической механики как первой фундаментальной естественнонаучной теории. Законы динамики. Пространство и время в классической механике. Субстанциальная и реляционная концепции пространства и времени. Энергия и импульс как меры движения в классической механике. Космология Ньютона.

Развитие естествознания в ХVIIIв. Принцип дальнодействия. Теория теплорода. Корпускулярная теория света. Развитие учения об электричестве и магнетизме в ХУШ в. Формирование идеи развития природы. Идея развития в астрономии. Создание внегалактической астрономии. Космогония Канта. Лапласовский детерминизм. Революция в химии (Лавуазье). Развитие геологии во второй половине ХVIII- начале ХIХ вв.
Вторая (классическая) научная картина мира. Методологические установки классического естествознания.
Важнейшие открытия в естествознании первой половины ХIХ в. Закон сохранения и превращения энергии. Победа атомно-молекулярного учения.
Волновая теория света. Интерференция, дифракция и поляризация света. Возникновение полевой концепции. Дискретная и континуальная парадигмы в физике. Теория электромагнитного поля. Принцип близкодействия. Диапазоны электромагнитного излучения. Электромагнитное поле и электромагнитные волны. Проблема эфира. Вещество и поле.
Специфика биологии как науки. Закономерности развития биологического знания. Структура биологического знания. Развитие биологии в конце ХVIII- начале ХIХ вв. Зарождение эволюционных представлений. Концепции эволюции: ламаркизм, катастрофизм, униформизм. Актуалистический метод. Дарвиновская революция. Принципы и понятия дарвиновской теории эволюции. Зарождение генетики.
Тепловая физика: от Карно к Гиббсу. Энергия, температура, энтропия. Становление статистической физики. Вероятность как атрибут сложных систем. Проблема необратимости систем реальности. Стрела времени.

Фундаментальные открытия в физике во второй половине ХIХ в. как решающие предпосылки глубокого кризиса классического естествознания. Научная революция на рубеже ХIХ-ХХ вв.

 

 

6 Первая универсальная физико-космологическая картина мира (Аристотель).

Все накопленные веками знания о природе вплоть до технического и житейского опыта были объединены, систематизированы, логически предельно развиты в первой универсальной картине мира, которую создал в IV в. до н. э. величайший древнегреческий философ (и, по существу, первый физик) Аристотель. Его учение о структуре, свойствах и движении всего, что входит в понятие природы. Вместе с тем, Аристотель впервые отделил мир земных (вернее, «подлунных») явлений от мира небесного, от собственно Космоса с его якобы особенными законами и природой объектов. В специальном трактате «О небе» Аристотель нарисовал свою натурфилософскую физическую, вернее, физико-космологическую картину мира.

Под Вселенной Аристотель подразумевал всю существующую материю (состоявшую, по его теории, из четырех обычных элементов — земли, воды, воздуха и огня и пятого — небесного — вечно движущегося эфира, который от обычной материи отличался еще и тем, что не имел ни легкости, ни тяжести). Аристотель критиковал Анаксагора за отождествление эфира с обычным материальным элементом — огнем. Таким образом, Вселенная, по Аристотелю, существовала в единственном числе.

В картине мира Аристотеля впервые была высказана идея взаимосвязанности свойств материи, пространства и времени. Вселенная представлялась конечной и ограничивалась сферой, за пределами которой не мыслилось ничего материального, а потому не могло быть и самого пространства, поскольку оно определялось как нечто, что было (или могло быть) заполнено материей. За пределами материальной Вселенной не существовало и времени, которое Аристотель с гениальной простотой и четкостью определил как меру движения и связал с материей, пояснив, что «нет движения без тела физического». За пределами материальной Вселенной Аристотель помещал нематериальный, духовный мир божества, существование которого постулировалось.

В аристотелевской физико-космологической картины мира первым элементом (представлением о материальной основе мира) было учение о пяти первичных формах материи с разделением их на «земные» (четыре стихии с врожденными качествами тяжести и легкости) и «небесную» (не имеющий этих качеств, а также и состояния покоя эфир). Вторым элементом, или представлением о механизме осуществления всех процессов, т. е. движений во Вселенной, выступали различные «естественные», врожденные движения первоэлементов и состоящих из них тел, причем эти движения объяснялись свойствами неразрывного комплекса — пространства и материи. Его замкнутость и сферичность делали Вселенную неоднородной и анизотропной, с крайним разделением свойств центральной и периферийных областей, что определяло движение тел — одних к центру, других от него. Третий элемент картины мира у Аристотеля имел явно астрономический, космологический характер — модель Вселенной. Как физик-экспериментатор (имевший в своем распоряжении лишь данные весьма грубого повседневного опыта и наблюдения) Аристотель выбрал более распространенную и подтверждавшуюся непосредственными ощущениями геоцентрическую модель — в виде конструкции из гомоцентрических сфер. Лишь материал небесных тел и сфер предполагался у него особым, небесным (эфиром). Такие модели, хотя и имели целью объяснение видимых движений небесных тел, но объясняли их лишь качественно, не позволяя теоретически определять, например, положение тел на небе. Последнее стало возможным лишь с появлением математических (геометрических) методов описания неравномерных видимых движений и, соответственно, с появлением новых, более простых геометрических моделей движения светил.

 

7.Геоцентрическая модель Птолемея

Первой глобальной естественнонаучной революцией, преобразовавшей астрономию, космологию и физику, было создание последовательного учения о геоцентрической системе мира. Начало этому учению положил еще древнегреческий ученый Анаксимандр, создавший в 6-м в. до н.э. довольно стройную систему кольцевых мироустроений. Однако последовательная геоцентрическая система была разработана в 4-м в. до н.э. величайшим ученым и философом древности Аристотелем, а затем, в 1-м в. математически обоснована Птолемеем. Геоцентрическую систему мира обычно называют системой Птолемея, а естественнонаучную революцию – аристотелевской. Почему же мы называем это учение революционным?

Переход от исходного эгоцентризма, а затем племенного или этнического топоцентризма[2] к геоцентризму представлял собой первый шаг на пути формирования его как объективной науки. Действительно, при этом непосредственная видимая полусфера неба, ограниченная горизонтом, была дополнена аналогичной небесной полусферой до полной небесной сферы. Соответственно и сама Земля, занимающая центральное положение в этой сферической Вселенной, стала считаться шарообразной. Пришлось, таким образом, признать не только возможность существования антиподов - обитателей диаметрально противоположных пунктов земного шара, но и принципиальную равноправность всех земных наблюдений мира. Вопрос же о наблюдениях, наблюдателях является весьма важным с точки зрения формирования объективной научной картины мира.

Интересно, что непосредственное подтверждение выводов о шарообразности Земли пришло значительно позже – в эпоху первых кругосветных путешествий и великих географических открытий, т.е. лишь на рубеже 15-го и 16-го веков, когда само геоцентрическое учение Аристотеля - Птолемея с его канонической системой идеальных равномерно вращающихся гомоцентрических (т.е. с единым центром) небесных сфер уже доживало свои последние годы.

Гиппарх, александрийский ученый, живший во 2 веке до н. э., и другие астрономы его времени уделяли много внимания наблюдениям за движением планет. Эти движения представлялись им крайне запутанными. В самом деле, направления движения планет по небу как бы описывают по небу петли. Эта кажущаяся сложность в движении планет вызывается движением Земли вокруг Солнца - ведь мы наблюдаем планеты с Земли, которая сама движется. И когда Земля " догоняет" другую планету, то кажется, что планета как бы останавливается, а потом движется назад. Но древние астрономы думали, что планеты действительно совершают такие сложные движения вокруг Земли.

Великий астроном и математик Клавдий Птолемей (87 - 165) сделал выбор в пользу геоцентрической модели Мира. Он завершил начатое Гиппархом математическое описание движений небесных тел и блестяще выполнил программу Платона- "с помощью равномерных и правильных круговых движений спасти явления, представляемые планетами ". Он пытался объяснить устройство Вселенной с учетом видимой сложности движения планет. Считая Землю шарообразной, а размеры ее ничтожными по сравнению с расстоянием до планет и тем более звезд. Птолемей, однако, вслед за Аристотелем утверждал, что Земля - неподвижный центр Вселенной.

В основе системы мира Птолемея лежат четыре постулата:

I. Земля находится в центре Вселенной.

II. Земля неподвижна.

III. Все небесные тела движутся вокруг Земли.

IV. Движение небесных тел происходит по окружностям с постоянной скоростью, т. е. равномерно.

Так как Птолемей считал Землю центром Вселенной, его система мира была названа геоцентрической. Вокруг земли, по Птолемею, движутся (в порядке удаленности от Земли) Луна, Меркурий, Венера, Солнце, Марс, Юпитер, Сатурн, звезды. Но если движение Луны, Солнца, звезд круговое, то движение планет гораздо сложнее. Каждая из планет, по мнению Птолемея, движется не вокруг Земли, а вокруг некоторой точки. Точка эта в свою очередь движется по кругу, в центре которого находится Земля. Круг, описываемый планетой вокруг движущейся точки, Птолемей назвал эпициклом, а круг, по которому движется точка около Земли,- деферентом. Птолемей построил геоцентрическую модель Мира (по сути дела - модель солнечной системы), которая позволила объяснить все наблюдаемые особенности движения планет, Солнца и Луны, а главное, стала мощным инструментом для предсказания (предвычисления) положений этих небесных тел. Главный труд Птолемея - "Большое математическое построение ".

 

 

8. Гелиоцентрическая система Коперника. Законы Кеплера.

Коперник низвел Землю до роли рядовой планеты, Солнце он поместил в центре системы, а все планеты вместе с Землей двигались вокруг Солнца по круговым орбитам. В течение 16 лет Коперник ведет астрономические наблюдения Солнца, звезд и планет. В1532г., накануне своего шестидесятилетия, он закончил труд всей своей жизни “О вращениях небесных сфер”. В феврале 1543 г., бессмертное творение Н. Коперника “о вращениях небесных сфер” было напечатано Но сам Коперник увидел свою книгу лишь за несколько часов до смерти (24 мая 1543 г.). Сочинение “О вращениях небесных сфер” состоит из 6 книг. В первой книге приводятся все логические и физические аргументы в пользу движения Земли. Вторая книга содержит элементы сферической астрономии и заканчивается каталогом, содержащим координаты 1025 звезд. Третья книга содержит теорию движения Солнца, четвертая книга – теорию движения Луны. Самой главной является пятая книга, в которой дано полное развитие гелиоцентрической теории планетных движений со всеми математическими доказательствами. В шестой книге изложено видимое движение планет.

Огромное значение созданной Коперником гелиоцентрической системы
Мира обнаружилось после того, как Кеплер открыл истинные законы эллиптического движения планет, а И.Ньютон на их основе – закон всемирного тяготения; когда Леверье и Адамс на основании данных этой системы предсказали существование и теоретически определили местоположение неизвестной планеты (Нептун), а Галле, направив телескоп в указанную ими точку неба, открыл неизвестную планету. В настоящее время учение Коперника не утратило своего значение т.к. оно раскрыло истинную картину Мира и совершило революционный переворот “в развитии системы научного мировоззрения”.

Коперник полагал, что Земля совершает троякое движение:
1. Вращение вокруг оси с периодом в одни сутки, следствием чего является суточное вращение небесной сферы;
2. Движение вокруг Солнца с периодом в год, приводящее к попятным движениям планет;
3. Так называемое деклинационное движение с периодом также примерно в один год, приводящее к тому, что ось Земли перемещается приближенно параллельно самой себе (небольшое неравенство периодов второго и третьего движений проявляется в предварении равноденствий).

Коперник не только объяснил причины попятных движений планет, вычислил расстояния планет от Солнца и периоды их обращений. Зодиакальное неравенство в движении планет Коперник объяснял тем, что их движение является комбинацией движений по большим и малым кругам.
Тем не менее, теория Коперника не может быть названа гелиоцентрической в полной мере, поскольку Земля в ней отчасти сохраняла особый статус:
• центром планетной системы было не Солнце, а центр земной орбиты;
• из всех планет Земля единственная двигалась по своей орбите равномерно, в то время как у остальных планет орбитальная скорость менялась.

По всей видимости, у Коперника сохранялась вера в существование небесных сфер, несущих на себе планеты. Таким образом, движение планет вокруг Солнца объяснялось вращением этих сфер вокруг своих осей.

Тем не менее, им был дан импульс для дальнейшей разработки гелиоцентрической теории движения планет, сопутствующих задач механики и космологии. Объявляя Землю одной из планет, Коперник устранял резкий разрыв между «надлунным» и «подлунным» мирами, характерный для философии Аристотеля.

 

9. Основные черты механической картины мира.
Механическая научная картина мира складывалась постепенно, в ходе научной революции 17-18 веков. Развитие ее строилось на основании работ Г. Галилея и П. Гассенди. Ученые восстановили атомизм, отраженный в трудах древних философов, на основании исследований Ньютона и Декарта. Последние сформулировали основные принципы, идеи и понятия, которые легли в основы механической картины мира, завершив при этом построение новой картины мира. Основой механической картины мира явился атомизм. Он превратил понимание мира и самого человека в совокупность огромного числа неделимых частиц, называемых атомами, которые перемещаются в пространстве и времени.


Основным понятием механической картины мира Ньютона стало понятие движения. Законы движения Ньютон утвердил как фундаментальные законы всего мироздания. По его теории все тела имеют внутреннее врожденное свойство равномерного и прямолинейного движения. Любые отклонения от этого движения имеют причиной действие на тело инерции - внешней силы. Масса является мерой инертности, другого, очень важного понятия механики классической.
Ньютон предложил принцип дальнодействия, который возник в результате решения проблемы взаимодействия тел. В основе этого принципа лежит взаимодействие между телами, которое происходит мгновенно при разном расстоянии и при отсутствии материальных посредников.
Концепция дальнодействия тесно связана с пониманием пространства и времени как особых сред, вмещающих взаимодействующие тела. В рамках механической картины мира Ньютон предложил концепцию абсолютного времени и пространства. Пространство при этом представлялось неким «черным ящиком», который вмещает тела всего мира. Исчезни все тела, пространство все равно продолжало бы существовать. Аналогично, в образе текущей реки, представлялось и время, также существующее абсолютно независимо от материи.
Механическая научная картина мира породила законы механики, которые жестко предопределяли любые события. Из них совершенно исключалась случайность. Присутствие человека в действующем мире ничего не меняло. Согласно теории механической картины мира Ньютона, исчезновение человека с лица земли никак не повлияло бы на существование мира: он продолжил бы свое существование, как прежде. Такая теория стала приниматься как универсальная.
В физике, тем не менее, уже накапливались эмпирические данные, которые серьезно противоречили существующей механической картине мира. Параллельно системе материальных точек существовало понятие сплошной среды, которое было связано уже не с корпускулярными представлениями о материи, а с континуальными




Поделиться с друзьями:


Дата добавления: 2015-04-24; Просмотров: 547; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.012 сек.