Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Оксиды азота 1 страница




15)

Классификация и свойства солей

Солями называются сложные вещества, состоящие из кислотных остатков и атомов металлов или других атомных группировок. При диссоциации солей образуются катионы металлов (а также катион аммония NH4) и анионы кислотных остатков.

При полном замещении атомов водорода в молекуле кислоты образуются средние (или нормальные) соли, при неполном - кислые соли. Существуют несколько групп солей.

При частичном замещении групп OH- в молекуле многокислотного гидроксида кислотными остатками образуются основные соли, например, KNO3, Na2CO3.

Кислые соли образуются многоосновными кислотами в случае их неполной нейтрализации гидроксидом, например, NaHCO3, Ca(HCO3)2. Кислые соли могут образовывать только многоосновные кислоты, одноосновные кислоты кислых солей образовать не могут.

Если атомы водорода в многоосновной кислоте замещены атомами не одного, а двух различных металлов, образуются двойные соли, например, KAl(SO4)2, NaKCO3.

При частичном замещении групп OH- в молекуле многокислотного основания кислотными остатками образуются основные соли: Zn(OH)Cl, Al(OH)SO4.

 

Также существует группа комплексных солей, состав которых нельзя объяснить, используя обычные представления о валентности. Строение и свойства этих соединений изучаются в высшей школе.

Название соли каждой кислоты происходит от латинского названия кислотного остатка. Например, соли азотистой кислоты называются нитритами: нитрит калия KNO2, нитрит магния Mg(NO2) 2. Названия солей бескислородных кислот оканчиваются на “ид”, например, сульфид калия K2S. В случае, когда соль образована металлом, имеющим разную валентность, то она указывается после названия металла римской цифрой в скобках. Например, FeCl2 - хлорид железа (II), Fe2(SO4)3 - сульфат железа (III). Если в кислой соли в кислотный остаток входит один атом водорода, то к названию соли добавляются частицы “би” или “гидро”, а если два атома, то “дигидро”: Mg(HCO3)2 - бикарбонат, или гидрокарбонат магния, Na2HPO4 - гидрофосфат натрия, NaH2PO4 - дигидрофосфат натрия.

Соли являются твердыми веществами с самой различной растворимостью в воде. По этому критерию их условно делят на растворимые, малорастворимые и практически нерастворимые.

Как электролиты средние соли в водных растворах диссоциируют на катионы металлов и анионы кислотных остатков:

MgSO4 → Mg2+ + SO42-

Кислые и основные соли диссоциируют ступенчато. У кислых солей вначале происходит диссоциация на катион металла и анион кислотного остатка, после чего в значительно меньшей степени, диссоциирует анион с образованием катионов водорода. У основных солей вначале отщепляются кислотные остатки, а затем, также в значительно меньшей степени, ионы OHH-.

Химические свойства солей во многом зависят от их химической природы.

Если соль образована летучими или слабыми кислотами наподобие HCl, H2S, H2СO3, то она взаимодействует с нелетучими кислотами, например. H2SO4, с выделением летучей или слабой кислоты и образованием новой соли:

2NaCl + H2SO4 = Na2SO4 + 2HCl

Ca3(PO4) 2 + 3H2SO4 = 3CaSO4 + 2H3PO4

В водных растворах соли могут вступать в реакцию с гидроксидами, образуя новую соль и гидроксид при условии, если один из продуктов реакции будет выпадать в осадок:

CuCl2 +2NaOH = Cu(OH)2 + 2NaCl

Na2SO4 + Ba(OH)2 = BaSO4+ 2NaOH

При подобных условиях в водных растворах соли могут вступать в реакцию друг с другом, образуя новые соли:

KCl + AgNO3 = AgCl+ KClO3

Соли также реагируют в водных растворах с металлами, стоящими в ряду активности до металла, входящего в состав соли:

Zn + CuSO4 = ZnSO4 + Cu

К наиболее общим способам получения солей относятся химические взаимодействия: металлов с неметаллами 2Na + Cl2 = 2NaCl

металлов с кислотами: Mg + H2SO4 = MgSO4 + H2

основных оксидов с кислотными: CaO + CO2 = CaCO3.

кислот с солями: H2SO4 + BaCl2 = BaSO4 + 2HCl.

 

оснований с солями: 2NaOH + CuSO4 = Na2SO4 + Cu (ОН)2

кислот с основаниями: NaOH + HCl = NaCl + H2O

основных оксидов с кислотами: H2SO4 + CaO = CaSO4 + H2O

кислотных оксидов с основаниями: Ca(OH)2 + CO2 = CaCO3 + H2O

двух солей между собой: K2SO4 + BaCl2 = BaSO4 + 2KCl

металлов с солями: Fe+ CuSO4 = FeSO4 + Cu

Кислые соли получают при неполной нейтрализации кислоты основанием, при этом гидроксид берут в количестве, недостаточном для полной нейтрализации кислоты: NaOH + H2S = NaHS + H2O

Основные соли получают частичной нейтрализацией основания кислотой:

Zn(ОН) 2 + HCl = Zn(ОН)Cl + H2O

Степень гидролиза соли выражается отношением числа гидролизованных молекул к общему числк молекул соли в растворе. Степень гидролиза увеличивается с повышением температуры и разбавлением.

Соли, образованные сильным основанием и сильной кислотой (NaCl, KCl, Ba(NO3)2, Na2SO4 и др.), гидролизу в растворе не подвергаются, т.к. не образуется слабодиссоциированных соединений (катионы сильных оснований и анионы сильных кислот не могут связывать ионы воды). Реакция растворов этих солей остается практически нейтральной, рН = 7.

 

14) Гидролизу подвергаются соли, образованные: а) сильным основанием и слабой кислотой; б) сильной кислотой и слабым основанием; в) слабым основанием и слабой кислотой.

а) Гидролиз солей, образованных сильным основанием и слабой кислотой протекает всегда по аниону, заряд которого определяет число теоретических ступеней гидролиза. Реакция среды их водныз растворов - щелочная (рН > 7).

 

б) Гидролиз солей, образованных сильной кислотой и слабым основанием протекает всегда по катиону, заряд которого определяет число теоретических ступений гидролиза. Реакция среды их водных растворов кислая (рН < 7).

 

в) Гидролиз солей, образованных слабым основанием и слабой кислотой протекает одновременно по катиону и по аниону, образуя сразу два слабых электролита. Реакция среды водного раствора такой соли устанавливается путем сравнения констант диссоциации образующихся слабых электролитов. Если константы диссоциации основания и кислоты близки, то реакция раствора остается практически нейтральной, если же они различаются на несколько порядков, то среда может быть слабокислой или слабощелочной - в зависимости от силы кислоты и основания.

 

Полный и необратимый гидролиз солей. Некоторые соли, образованные слабыми летучими кислотами и многокислотными гидроксидами не могут находиться в виде водных растворов из-за полного необратимого взаимодействия с водой, сопровождающегося одновременным выделением газа и выпадением осадка.

При взаимодействии сульфида алюминия с водой наблюдается образование осадка гидроксида алюминия и выделение сероводорода

Al2S3 + 6H2O = 2Al(OH)3↓ + H2S↑

 

Алгоритм написания уравнений гидролиза.

1. Определяем тип гидролиза, “правило цепочки”: цепочка рвется по слабому звену, гидролиз идет по иону слабого электролита.

 

Пример 1. Гидролиз сульфата меди(II): CuSO4 = Cu2+ + SO42–

Соль образована катионом слабого основания (подчеркиваем) и анионом сильной кислоты. Гидролиз по катиону.

 

2. Пишем ионное уравнение гидролиза, определяем среду

Cu2+ + H-OH → CuOH+ + H+;

образуется катион гидроксомеди(II) и ион водорода, среда кислая

 

3. Составляем молекулярное уравнение. Надо учитывать, что составление такого уравнения есть некоторая формальная задача. Из положительных и отрицательных частиц находящихся в растворе, мы составляем нейтральные частицы, существующие только на бумаге. В данном случае мы можем составить формулу (CuOH)2SO4, но для этого наше ионное уравнение мы должны мысленно умножить на два. Получаем:

2CuSO4 + 2H2O → (CuOH)2SO4 + H2SO4

Например:

1. Соль, образованная слабым основанием и сильной кислотой (гидролиз по катиону).

NH4Cl+HOH<—>NH4OH+HCl

NH4+ Cl-+HOH<—>NH4OH+H++ Cl-

NH4+ +HOH<—>NH4OH+H+

В растворе накапливаются ионы H+, в результате чего реакция смещается в кислую сторону, рН в растворах солей подобного типа меньше7.

 

2. Соль, образованная сильным основанием и слабой кислотой (гидролиз по аниону).

CH3COONa+HOH<—>CH3COOH+NaOH

CH3COO-+Na++HOH<—>CH3COOH+Na++OH-

CH3COO-+HOH<—>CH3COOH+OH-

В данном случае гидролиз ведет к увеличению концентраций ионов в растворе, среда щелочная, рН>7.

 

3. Соль, образованная слабой кислотой и слабым основанием (гидролиз по катиону и по аниону).

CH3COONH4 +HOH<—>CH3COOH+NH4OH

CH3COO- + NH4+ +HOH<—>CH3COOH+NH4OH

В результате гидролиза ацетата аммония происходит образование двух слабых электролитов, раствор оказывается близким к нейтральному, рН~7.

4. Соль, образованная сильным основанием и сильной кислотой.

Соли подобного типа гидролизу не подвергаются. Их ионы не образуют с ионами H+ и OH-воды слабодиссоциируюших или труднорастворимых соединений, равновесие между ионами и молекулами воды не нарушается и раствор остается нейтральным, рН равен 7.

Между классами существует важная связь, которую называют генетической ("генезиз" по-гречески обозначает "происхождение"). Эта связь заключается в том, что из веществ одного класса можно получить вещества других классов.

Существует два основных пути генетических связей между веществами: один из них начинается металлами, другой – неметаллами.

Например, сульфат кальция CaSO4 можно получить либо из металла кальция, либо другим путем – из неметалла серы:

 

16) окислительно-восстановительные реакции (ОВР) (реакции окисления-восстановления) происходят с изменением степени окисления атомов, входящих в состав реагирующих веществ. При окислении веществ степень окисления элементов возрастает, при восстановлении - понижается.

при этом окислитель восстанавливается, а восстановитель - окисляется. При протекании реакций в гальваническом элементе переход электронов осуществляется по проводнику, соединяющему электроды элемента, и изменение энергии Гиббса ΔG в данной реакции может быть превращено в полезную работу. В отличие от реакций ионного обмена окислительно-восстановительные реакции (ОВР) в водных растворах протекают, как правило, не мгновенно.

Составление уравнений окислительно-восстановительных реакций

A) Электронный баланс - метод нахождения коэффициентов в уравнениях окислительно-восстановительных реакций, в котором рассматривается обмен электронами между атомами элементов, изменяющих свою степень окисления. Число электронов, отданное восстановителем равно числу электронов, получаемых окислителем.

 

Уравнение составляется в несколько стадий:

1. Записывают схему реакции.

KMnO4 + HCl → KCl + MnCl2 + Cl2 + H2O

2. Проставляют степени окисления над знаками элементов, которые меняются.

KMn+7O4 + HCl-1→ KCl + Mn+2Cl2 + Cl20 + H2O

3. Выделяют элементы, изменяющие степени окисления и определяют число электронов, приобретенных окислителем и отдаваемых восстановителем.

Mn+7 + 5ē → Mn+2

2Cl- - 2ē → Cl20

4. Уравнивают число приобретенных и отдаваемых электронов, устанавливая тем самым коэффициенты для соединений, в которых присутствуют элементы, изменяющие степень окисления.

Mn+7 + 5ē ® Mn+2 2

2Cl- - 2ē ® Cl 0 5

––––––––––––––––––––––––

 

2Mn+7 + 10Cl- → 2Mn+2 + 5Cl20

 

5. Подбирают коэффициенты для всех остальных участников реакции.

 

2KMn+7O4 + 16HCl- → 2KCl + 2Mn+2Cl2 + 5Cl20 + 8H2O

 

Б) электронно-ионный баланс (метод полуреакций) метод нахождения коэффициентов, в котором рассматривается обмен электронами между ионами в растворе с учетом характера среды:

 

 

2Cl- – 2ē → Cl20 5

MnO4- + 8H++ 5ē → Mn2+ + 4H2O 2

7+ 2+

––––––––––––––––––––––––––––––––––––––

 

10Cl- + 2MnO4- + 16H+ → 5Cl20 + 2Mn2+ + 8H2O

 

(для уравнивания ионной полуреакции используют H+, OH- или воду)

 

17) ВОДОРОД, Н (лат. hydrogenium), самый легкий газообразный химический элемент – член IA подгруппы периодической системы элементов, иногда его относят к VIIA подгруппе. В нормальных условиях водород – бесцветный газ, без запаха и вкуса, очень легкий: 1 л водорода при 0° C и атмосферном давлении имеет массу 0,08987 г

Соединения металлов с водородом (они называются гидридами металлов) представляют собой твердые вещества. Гидриды металлов можно получать непосредственно из металла и водорода.

 

Гидриды бурно реагируют с водой с образованием газообразного водорода:

 

 

Это еще один удобный способ получения газообразного водорода. Источником водородных атомов являются как гидрид металла, так и вода.

Соединения водорода с неметаллами в большинстве являются газами. Исключение составляет вода.

Из всех соединений водорода одним из важнейших является аммиак, который получают реакцией водорода с азотом при высокой температуре, давлении и в присутствии катализатора:

Восстановительные свойства водорода используют для получения чистых металлов из их оксидов. Например, при нагревании оксида меди CuO в токе водорода образуется вода и порошок металлической меди:

 

 

Для некоторых очень тугоплавких металлов восстановление их оксидов водородом оказывается удобным и экономичным способом получения. Например, металл вольфрам, из которого делают нити лампочек накаливания, получают с помощью реакции:

WO3 + 3 H2 = W + 3 H2O

18) Молекула воды имеет следующее электронное строение:

 

Две электронные пары образуют полярные ковалентные связи между атомами водорода и кислорода, а оставшиеся две электронные пары остаются свободными и называются неподеленными. Молекула воды имеет угловое строение, угол Н–О–Н составляет 104,5 градусов.

 

 

Наличие в молекулах H2O неподеленных электронных пар у атомов кислорода и положительно заряженных атомов водорода приводит к совершенно особому взаимодействию между молекулами, называемому ВОДОРОДНОЙ СВЯЗЬЮ (рис. 7-1). В отличие от всех уже знакомых нам видов химической связи эта связь – межмолекулярная.

 

Водородная связь (на рисунке она обозначена пунктиром) возникает при взаимодействии обедненного электронами атома водорода одной молекулы воды с неподеленной электронной парой атома кислорода другой молекулы воды.

 

 

Рис. 7-1. Водородные связи между молекулами воды (обозначены пунктиром).

 

Водородная связь является частным случаем межмолекулярых связей. Считается, что она обусловлена в основном электростатическими силами. Для возникновения водородной связи нужно, чтобы в молекуле был один или несколько атомов водорода, связанных с небольшими, но электроотрицательными атомами, например: O, N, F. Важно, чтобы у этих электроотрицательных атомов были неподеленные электронные пары. Поэтому водородные связи характерны для таких веществ, как вода H2O, аммиак NH3, фтороводород HF. Например, молекулы HF связаны между собой водородными связями, которые на рисунке показаны пунктирными линиями:

 

Водородные связи приблизительно в 20 раз менее прочные, чем ковалентные, но именно они заставляют воду быть жидкостью или льдом (а не газом) в обычных условиях. Водородные связи разрушаются только тогда, когда жидкая вода переходит в пар.

При температурах выше 0 °С (но ниже температуры кипения) вода уже не имеет такую упорядоченную межмолекулярную структуру, как показано на рис. 7-1. Поэтому в жидкой воде молекулы связаны между собой лишь в отдельные агрегаты из нескольких молекул. Эти агрегаты могут свободно двигаться рядом друг с другом, образуя подвижную жидкость. Но при понижении температуры упорядоченность становится все больше и больше, а агрегаты – все крупнее. Наконец, образуется лед, который имеет именно такую упорядоченную структуру, которая показана на рисунке.

В кристалле льда между молекулами остаются пустоты. Объем этих пустот больше, чем размер отдельной молекулы Н2О. Поэтому лед имеет меньшую плотность, чем жидкая вода и плавает на поверхности воды. Большинство же других веществ при замерзании увеличивает свою плотность.

Таким образом, водородные связи придают воде еще одно уникальное свойство, без которого вряд ли могла бы существовать разнообразная жизнь в тех районах Земли, где температура зимой понижается ниже 0 °С. Если бы лед тонул в воде, то зимой все водоемы промерзали бы до самого дна. Трудно ожидать, что рыбы согласились бы жить в таких условиях. Человек мог бы растапливать лед, превращая его в воду для своих нужд, но это потребовало бы огромных затрат дополнительной энергии.

** Еще одно красивое проявление водородных связей – голубой цвет чистой воды в ее толще. Когда одна молекула воды колеблется, она заставляет колебаться и связанные с ней водородной связью другие молекулы. На возбуждение этих колебаний расходуются красные лучи солнечного спектра, как наиболее подходящие по энергии. Таким образом, из солнечного спектра "отфильтровываются" красные лучи – их энергия поглощается и рассеивается колеблющимися молекулами воды в виде тепла.

 

В белом солнечном свете различные цвета как бы уравновешивают друг друга. Поэтому солнечный свет кажется глазу "белым" – лишенным цвета. Если "отфильтровать" лучи одного участка спектра, то начинает проступать другой – в данном случае голубой участок спектра. Он и окрашивает воду в красивый голубой цвет. Но для этого требуется, чтобы солнечный луч прошел не менее чем через 2-х метровую толщу чистой воды и "потерял" достаточно много красных лучей.

По химическим свойствам вода - достаточно активное вещество, в подходящих условиях она реагирует со многими металлами и неметаллами, основными и кислотными оксидами:

2H2O + 2Na = 2NaOH + H2

H2O + Cl2 = HClO + HCl

H2O + BaO = Ba(OH)2

3H2O + P2O5 = 2H3PO4

 

Благодаря полярности молекул воды в ней растворяются и диссоциируют многие ионные и ковалентные вещества типа оснований, кислот и солей, большинство солей вступает с водой в реакции обратимого гидролиза. Вода как растворитель способствует протеканию огромного количества обменных и окислительно-восстановительных реакций.

Кристаллогидраты, кристаллы, включающие молекулы воды. Многие соли, а также кислоты и основания выпадают из водных растворов в виде К. Типичными К. являются многие природные минералы, например гипс CaSO4·2H2O, карналлит MgCl2·KCl·6H2O.

Со многими безводными солям вода образует кристаллогидраты, один из методов обнаружения воды основан на переходе во влажной атмосфере белого сульфата меди(II) CuSO4 в голубой медный купорос CuSO4. 5H2O.

 

19) При обычных условиях хлор — газ желто-зеленого цвета с резким запахом, ядовит. Он в 2,5 раза тяжелее воздуха. В 1 объеме воды при 20 °С растворяется около 2 объемов хлора. Такой раствор называется хлорной водой. При атмосферном давлении хлор при -34 °С переходит в жидкое состояние, а при -101 °С затвердевает. При комнатной температуре он переходит в жидкое состоянии только при давлении 600 кПа (6 атм). Хлор хорошо растворим во многих органических растворителях, особенно в тетрахлориде углерода, с которым не взаимодействует.

Химические свойства. На внешнем электронном уровне атома хлора находятся 7 электронов (s2p5), поэтому он легко присоединяет электрон, образуя анион Сl-. Благодаря наличию незаполненного d-уровня в атоме хлора могут появляться 1, 3, 5 и 7 неспаренных электронов, поэтому в кислородсодержащих соединениях он может иметь степень окисления +1, +3, +5 и +7.

 

В отсутствие влаги хлор довольно инертен, но в присутствии даже следов влаги активность его резко возрастает. 0н хорошо взаимодействует с металлами:

2 Fе + 3 С12 = 2 FеС13 (хлорид железа (III)

Cu + С12 = СuС12 (хлорид меди (II)

и многими неметаллами:

Н2 + С12 = 2 НСl (хлороводород)

2 S + С12 = S2Cl2 (хлорид серы (1))

Si + 2 С12 = SiС14 (хлорид кремния. (IV))

2 Р + 5 С12 = 2 РС15 (хлорид фосфора (V))

С кислородом, углеродом и азотом хлор в непосредственное взаимодействие не вступает.

При растворении хлора в воде образуется две кислоты: хлороводородная, или соляная, и хлорноватистая:

С12 + Н2О = НСl + НСlO

При взаимодействии хлора с холодными растворами щелочей образуются соответствующие соли этих кислот:

С12 + 2 NaOН = NaС1 + NaClО + Н2О

Полученные растворы называются жавелевой водой, которая, как и хлорная вода, обладает сильными окислительными свойствами благодаря наличию иона ClO- и применяется для отбеливания тканей и бумаги. С горячими растворами щелочей хлор образует соответствующие соли соляной и хлорноватой кислот:

3 С12 + 6 NаОН = 5 NаСl + NаС1O3 + 3 Н2О

3 С12 + 6 КОН = 5 КСl + КС1O3 + 3 Н2О

Образовавшийся хлорат калия называется бертолетовой солью.

При нагревании хлор легко взаимодействует со многими органическими веществами. В предельных и ароматических углеводородах он замещает водород, образуя хлорорганическое соединение и хлороводород, а к непредельным присоединяется по месту двойной или тройной связи. При очень высокой температуре хлор полностью отбирает водород у углерода. При этом образуются хлороводород и сажа. Поэтому высокотемпературное хлорирование углеводородов всегда сопровождается сажеобразованием.

Хлор — сильный окислитель, поэтому легко взаимодействует со сложными веществами, в состав которых входят элементы, способные окисляться до более высокого валентного состояния.

2 FеС12 + С12 = 2 FеС13

Н2SO3 + С12 + Н2О = Н24 + 2 НСl

Получение. В лабораторных условиях хлор получают действием концентрированной соляной кислоты на различные окислители, например диоксид марганца (при нагревании), перманганат калия или бертолетову соль:

МnО2 + 4 НСl = МnС12 + С12 + 2 Н2О

2 КМnО4 + 16 НСl = 2 КС1 + 2 МnС12 + 5 С12 + 8 Н2О

КС1O3 + 6 НСl = КС1 + 3 С12 + 3 Н2О

В промышленности хлор получают электролизом растворов, или расплавов хлоридов щелочных металлов. При электролизе расплава хлорида щелочного металла на катоде выделяется щелочной металл, а на аноде — хлор:

2 Nа+ + 2е- = 2 Nа

 

2 Сl- - 2е- = Сl2

 

В растворе хлорид щелочного металла диссоциирует на ионы:

NаС1 =Na+ + С1-

Вода как слабый электролит также диссоциирует на ионы:

Н2О = Н+ + OH-

При пропускании электрического тока через такой раствор на катоде из двух катионов — Nа+ и Н+ — разряжается катион менее активного водорода, а на аноде из двух анионов — ОН- и Сl- — хлорид-ион:

2 Н++ 2 е-= Н2

2 Сl -2 е- = С12

 

По мере протекания электролиза в катодном пространстве накапливаются ионы ОН- и образуется едкий натр. Так как хлор может реагировать со шелочью катодное и анодное пространства разделено полупроницаемой диафрагмой из асбеста.

Применение. Ежегодное мировое потребление хлора превышает 1 млн. т. Он используется для отбеливания бумаги и тканей, обеззараживания питьевой воды, производства различных. ядохимикатов, соляной кислоты, хлорорганических веществ и растворителей, а также в лабораторной практике.

Хлороводород и соляная кислота. Хлороводород представляет собой бесцветный газ с резким, удушливым запахом. При атмосферном давлении и температуре -84 °С он переходит в жидкое состояние, а при -112 °С затвердевает. Хлороводород в 1,26 раза тяжелее воздуха. В 1 л воды при 0 °С растворяется около 500 л хлороводорода.

Сухой хлороводород довольно инертный и не реагирует даже с активными металлами, а в присутствии следов влаги такая реакция протекает довольно энергично.

Хлороводород может присоединяться к непредельным углеводородам по месту двойной или тройной связи, образуя хлорорганические соединения.

В лабораторных условиях хлороводород получают действием концентрированной серной кислоты на сухой хлорид натрия:

NаСl + H24 = NаНSO4 + НСl

2 NаСl + Н2SO4 = Nа2SO4 + 2 НСl

Первая из этих реакций протекает при слабом нагревании, а вторая — при более высокой температуре. Поэтому получать хлороводород в лаборатории лучше по первому уравнению и серной кислоты следует брать столько, сколько требуется для образования гидросульфата натрия.

В промышленности хлороводород получают действием концентрированной серной кислоты на сухой хлорид натрия при высокой температуре (по второму уравнению), а также сжиганием водород в атмосфере хлора:

Н2 + Сl2 = 2 НС1

Хлороводород образуется в значительных количествах как побочный продукт при хлорировании насыщениях и ароматических углеводородов.

Раствор хлороводорода в воде называется соляной кислотой. Это сильная кислота, она реагирует со всеми металлами, стоящими в ряду напряжений левее водорода, с основными и амфотерными оксидами, основаниями и солями:




Поделиться с друзьями:


Дата добавления: 2015-04-24; Просмотров: 487; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.163 сек.