КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Определение необходимой (оптимальной) численности выборки
Методы определения оптимальной численности выборочной совокупности. При разработке программы выборочного обследования одним из наиболее сложных является вопрос о том, сколько единиц изучаемой совокупности необходимо обследовать, т.е. об объеме выборки. При этом следует иметь в виду, что при любом способе отбора предельная ошибка выборки обратно пропорциональна числу обследованных единиц. Т.е. средняя ошибка выборки пропорциональна , т.е. при увеличении численности выборки в 4 раза, ошибка уменьшится вдвое. Увеличивая n можно свести ошибку к min. При n ® N, ®0. Так как при проведении выборочного наблюдения определение характеристик выборки в ряде случаев сопровождается разрушением обследуемых образцов, то нормы отбора должны быть минимальны, так же не следует забывать об основном преимуществе несплошного наблюдения (минимум затрат и времени). Повышение процента выборки ведет к увеличению объема исследуемой работы. В то же время, если в выборку взять недостаточное количество проб, то результаты исследования будут содержать большие погрешности. Все это необходимо учитывать при организации выборочного обследования. Определение необходимой численности выборки основывается на формуле предельной ошибки выборки (при повторном отборе). Решаем это равенство относительно n, в результате получаем численность выборки при расчете средней величины количественного признака. Наиболее сложно определить дисперсию изучаемого признака в генеральной совокупности. До проведения обследования приближенно оценить дисперсию или среднее квадратическое отклонение можно на следующей основе: 1. исходя из результатов специально организованного пробного обследования; 2. опираясь на данные предыдущих обследований, как выборочных, так и сплошных. Например, используя коэффициент вариации . Следовательно, дисперсия 3. исходя из закона распределения изучаемого признака в генеральной совокупности. Если распределение близко к нормальному, то размах вариации R в 6 раз больше среднего квадратического отклонения: R = 6s. В таком случае, зная максимальное и минимальное значения признака, можно оценить s: s=R/6 Если в результате выборочного обследования необходимо установить долю единиц, обладающих определенным значением альтернативного признака, то дисперсия для доли будет равна рq. В этом случае формула необходимой численности выборки примет вид: Максимальное значение дисперсии альтернативного признака равно 0,25, т.е. max (pq) = 0,25 (при р = q -x*ользуя кямо ичество фаз, каждая из которых отличается подробностью программы наблюдениякими буквами, выборочные показатели, 0,5). Если доля единиц, обладающих изучаемым признаком, т.е. р, неизвестна, в расчете необходимой численности выборки можно использовать указанное максимальное значение для дисперсии альтернативного признака.
Трудовые и материальные затраты на проведение выборки напрямую зависят от ее численности, поэтому чрезвычайно важно до оптимума сохранить численность выборки, так чтобы не утратить ее точность. Поиск оптимальной численности выборки удобно осуществлять на основе формул средней и предельной ошибок. Из формулы средней ошибки случайного повторного отбора видно, что величина средней ошибки обратно пропорциональна квадратному корню из численности выборки
()
Чтобы сократить среднюю ошибку в 2 раза, нужно численность выборки увеличить в 4 раза. Используя формулу предельной ошибки выборки можно найти численность
Это оптимальная численность выборки для случайного повторного отбора Наличие в формуле оптимальной численности генеральной дисперсии приводит на первый взгляд к парадоксу: зачем нам проводить выборку, если известна генеральная дисперсия (а, следовательно, и генеральная средняя). Однако на практике генеральная дисперсия обычно не известна, вместо нее используют выборочную дисперсию предыдущего обследования, так как дисперсия как показатель является более устойчивой, чем сами варианты, на основе которых она рассчитана. Если отбор осуществляется бесповторно, то численность выборки для такого отбора рассчитывается по формуле:
Если в условиях задачи присутствует предельная ошибка выборочной доли, то формула: - для повторного отбора; - для бесповторного отбора.
Дата добавления: 2015-04-24; Просмотров: 2066; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |