Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Вопрос №28: Этологическая структура популяций животных




Вопрос №27: Происхождение и эволюция биосферы. Структура, границы и функции биосферы. Учение В.И. Вернадского о биосфере. Биологическое разнообразие, как основное условие устойчивости биосферы.

Возникновение биосферы теснейшим образом связано с появлением жизни на Земле.

Некоторые исследователи связывают появление жизни на Земле со временем ее остывания и оценивают возраст Земли по этому показателю. Эти вычисления в 1861г. сделал английский физик В. Томсон. Значительно позже, после открытия явления радиоактивности и разработки на ее основе метода измерения геологического времени, оказалось, что расчеты В. Томсона ошибочны. По современным представлениям, возраст Земли оценивается в 4.55 млрд. лет, а сохранившиеся древнейшие участки земной коры – в 4 млрд. лет.

Авторы большинства гипотез о происхождении жизни на Земле допускали, что наша планета в течение огромного промежутка времени была безжизненной и на ее поверхности происходила химическая эволюция, которая предшествовала биологической. На поверхности планеты происходил медленный абиогенный синтез органических соединений, который, в конечном счете, привел к появлению примитивных форм жизни. Анализ новых данных космохимии свидетельствует о раннем зарождении жизни в пределах Солнечной системы. Химическая эволюция вещества Земли и других планет, вероятно, предшествовала их образованию. Первичная атмосфера нашей планеты была представлена углекислым газом. Но это химическое соединение не может самопроизвольно образовывать более сложные органические соединения. В настоящее время существует много подтверждений в пользу того, что зарождение жизни, возможно, произошло в космических условиях.

Анализ существующего состава метеоритов показывает, что содержащееся в них органическое вещество имеет достаточно сложный состав. В органическом веществе метеоритов были обнаружены углеводороды, среди которых наиболее распространены соединения с 16 атомами углерода в молекуле, а также спирты, карбониловые соединения, аминокислоты и др. Характерной особенностью органических соединений, обнаруженных в метеоритах, является отсутствие оптической плотности. Это свидетельствует об их происхождении за пределами Земли.

Теоретические и экспериментальные данные, полученные в последнее время, позволяют сделать вывод: синтез относительно сложных органических соединений, предшествующих появлению живого вещества, - закономерный этап химической эволюции Солнечной системы. Эти органические вещества, образовавшиеся в космических условиях, вошли в состав многих тел, но на Земле реализовались возможности дальнейшей эволюции, что обеспечило возникновение саморегулирующихся высокомолекулярных систем -–непосредственных предков первых живых организмов.

Рассмотрим два варианта событий. Либо химическая эволюция, начавшаяся в космических условиях, продолжила свое развитие на Земле и в относительно короткое время привела к появлению первых живых организмов, либо образование молекул ДНК произошло в космических условиях, а реализация ее возможностей – в первых водоемах планеты, которые содержали некоторое количество органического вещества.

Дальше в ходе геологической истории эволюция биосферы происходила по пути разрешения противоречия между безграничной способностью организмов к размножению и ограниченностью ресурсов, доступных в определенную геологическую эпоху. Данное противоречие разрешается путем овладения организмами новыми источниками вещества и энергии за счет приобретения или новых качеств. В этом случае наследственная изменчивость является предпосылкой развития, а естественный отбор служит механизмом закрепления новых качеств.

Переломным этапом в эволюции древней биосферы был переход от гетеротрофного режима питания к автотрофному, основанному на фотосинтезе. С появлением фотосинтезирующих организмов началось образование свободного кислорода, что со временем стало предпосылкой для создания в атмосфере озонового экрана. Это произошло около 4 млрд. лет назад. Увеличения содержания кислорода в атмосфере способствовало выходу органического мира на поверхность континентов. О времени появления живых организмов на суше точных палеонтологических данных нет.

Эволюция растений длительное время происходила в водной среде. Далее по мере накопления кислорода создались предпосылки для появления озонового экрана, который защищает все живое от ультрафиолетового излучения. Это, в конечном счете, создало условия для выхода растений из водной среды на континенты. Считается, что первые растения, появившиеся на суше, были псилофиты – споровые низкорослые растения, напоминающие плауны. Потом псилофиты уступили место папоротникообразным растениям, которые, в свою очередь, сменились хвойными.

Развитие растений создало предпосылки для появления животных. Они так же, как и растения, произошли от одноклеточных организмов. В результате дифференциации функций отдельных клеток на определенном этапе эволюции образовались организмы, давшие затем начало многоклеточным.

На основании палеонтологических данных в ходе эволюции органического мира выделяют ряд закономерностей:

- необратимость эволюции – организм не может вернуться хотя бы частично к предшествующему состоянию, которое было в ряду его предков;

- ускорение биологической эволюции в ходе геологического времени;

- закономерность, впервые отмеченная В. О. Ковалевским в 1871г.: “…каждая следующая большая эпоха Земли короче предыдущей, и в это короткое время успевало народиться и вымереть больше разнообразных форм, чем в предыдущую эпоху…” (цит. по Г. В. Войткевичу, В.А. Вронскому, 1996г.);

- эволюция различных групп организмов протекала с разной скоростью;

- существуют консервативные группы организмов, которые почти не изменились в ходе геологического времени (микроорганизмы, папоротниковые, плауны, голосемянные), однако они составляют небольшую часть от общего числа видов;

- на фоне общей тенденции ускорения эволюции определенные эпохи отличались повышенным видообразованием. Вероятно, что связано с радиоактивностью. С.Г. Неручаев в геологической истории Земли выделил 30 эпох уранонакопления. Эти эпохи отличались значительным усилением мутационных процессов, видообразования и сменой фауны и флоры;

- среди животных в ходе геологического времени происходит направленное изменение нервной системы.

Таким образом, эволюцию биосферы Земли можно представить в виде трех последовательно сменяющихся этапов.

Первый этап – восстановительный. Он начался в космических условиях и завершился появлением на Земле первой гетеротрофной биосферы. На этом этапе протекали каталитические и радиохимические реакции синтеза сложных органических соединений, отсутствовал свободный кислород, основным источником живых организмов была радиация. Этот период, вероятно, был коротким по времени.

Второй этап – слабоокислительный – характеризовался появлением фотосинтеза. Он длился более 2 млрд. лет и закончился около 1.8 млрд. лет назад. Свободного кислорода образовывалось еще мало, и атмосфера состояла из углекислого газа.

Третий этап – окислительный – связан с появлением фотоавтотрофной биосферы. Он начался с медленного роста содержания кислорода в атмосфере и завершился значительным ускорением эволюции организмов. Увеличение продукции кислорода привело к появлению растительного покрова и животных на континентах, что резко увеличило продукцию фотосинтеза. Под воздействием живого вещества сформулировался современный химический состав атмосферы и растворенного вещества гидросферы.

Биологическая эволюция, будучи необратимым процессом, предопределила необратимость эволюции биосферы в целом и создала предпосылки для ее перехода в качественно новое состояние - ноосферу, или сферу разума, когда все происходящие в биосфере изменения контролируются человеком.

 

Учение В.И. Вернадского о биосфере

 

Учение В.И. Вернадского о биосфере представляет собой обобщение естественнонаучных знаний, оно вобрало в себя эволюционные взгляды Ч. Дарвина, периодический закон Д.И. Менделеева, теорию единства пространства и времени А. Энштейна, идеи о неразрывной связи живой и неживой природы многих отечественных и зарубежных ученых.

В работах В.И. Вернадского рассматриваются компоненты биосферы, ее границы, функции живого вещества, эволюция биосферы.

Ученый впервые показал, что живая и неживая природа Земли тесно взаимодействуют и составляют единую систему.

Структура биосферы. В биосфере можно выделить следующие основные компоненты: живое вещество, косное (неживое) вещество, неживое биогенное вещество, биокосное вещество.

Живым веществом В.И. Вернадский назвал совокупность живых организмов, населяющих нашу планету. Это главная сила, преобразующая поверхность планеты, основа формирования и существования самой биосферы. Во все геологические эпохи живое вещество, преобразуя и аккумулируя солнечную энергию, влияло на химический состав земной коры, было мощной геохимической силой, формирующей лик Земли.

Живое вещество имеет количественные характеристики, его можно изучать, используя математические законы.

Количество живого вещества в биосфере (биомасса) - величина постоянная или мало изменяющаяся с течением времени. Во все геологические эпохи на Земле количество живого вещества было практически одинаковым. Ученый подчеркивал, что современное живое вещество генетически родственно живому веществу прошлых геологических эпох.

Под косным веществом В.И. Вернадский понимал такие вещества биосферы, в создании которых живые организмы не участвуют. Это, например, газы, твердые частицы и водяные пары, выбрасываемые вулканами, гейзерами.

Кроме живого и косного веществ, в состав биосферы входят:

неживое биогенное вещество, которое образовано живым веществом современной и прошлых геологических эпох (ископаемые остатки организмов, нефть, уголь, газы атмосферы, озерный ил - сапропель, осадочные породы, например, известняки);

биокосное вещество, которое создавалось одновременно и живыми организмами и косным веществом (например, почва, вода обитаемых водоемов, глинистые минералы).

Границы биосферы совпадают с границами распространения живых организмов в оболочках Земли, что определяется наличием условий существования жизни (благоприятный температурный режим, уровень радиации, достаточное количество воды, минеральных веществ, кислорода, углекислого газа). Биосфера охватывает всю поверхность суши, а также океаны, моря и ту часть недр Земли, где находятся породы, созданные в процессе жизнедеятельности живых организмов. Иначе говоря, биосфера - это часть литосферы, атмосферы, гидросферы, заселенная живым веществом.

Для существования живых организмов необходимы следующие условия: достаточное количество воды, минеральных веществ,,, оптимальный температурный режим, уровень радиации и др.

Верхняя граница биосферы определяется озоновым экраном, представляющим собой тонкий слой (2-4 мм) газа озона (). Роль озонового слоя в биосфере велика: он задерживает губительные для живого ультрафиолетовые лучи солнечного света. Этот слой расположен на высотах 16 - 20 км.

Нижняя граница биосферы неровная. К примеру, в литосфере живые организмы или продукты их жизнедеятельности можно встретить на глубине 3,5-7,5 км, а в Мировом океане организмы - на глубине 10 - 11 км.

Нижняя граница на суше связана с областями "былых биосфер" - так В.И. Вернадский назвал сохранившиеся остатки биосфер прошлых геологических эпох (накопления осадочных пород, углей, горючих сланцев и др.). "Былые биосферы" служат доказательством длительной эволюции биосферы Земли.

Ученый отмечал, что живое вещество распределено в биосфере неравномерно. Основная его масса сконцентрирована в приповерхностном слое суши толщиной 50-100 м и в приповерхностной толще воды (10-20 м). Здесь находится более 90% биомассы Земли. Но и в приповерхностном слое имеются пространства, густо заселенные живыми организмами (тропики и субтропики, теплые моря), и менее заселенные территории (пустыни, высокогорья, арктические и антарктические области). Для остальных территорий биосферы характерно, по словам В.И. Вернадского, "разрежение живого вещества".

Тем не менее, в пределах биосферы нет абсолютно безжизненных пространств. Даже в самых суровых условиях обитания можно найти бактерии и другие микроорганизмы. В.И. Вернадский высказал идею о "всюдности жизни", живое вещество способно "растекаться" по поверхности планеты; оно с огромной скоростью захватывает все незанятые участки биосферы, что обусловливает "давление жизни" на неживую природу.

Функции живого вещества. Одна из основных заслуг В.И. Вернадского состоит в том, что он впервые обратил внимание на роль живых организмов как мощного геологического фактора, на то, что живое вещество выполняет в биосфере различные биогеохимические функции. Благодаря этому обеспечиваются круговорот веществ и превращение энергии и, в итоге, целостность, постоянство биосферы, ее устойчивое существование. Важнейшими функциями являются энергетическая, газовая, окислительно-восстановительная, концентрационная.

Энергетическая функция заключается в накоплении и преобразовании растениями энергии Солнца (бактерии-хемоавтотрофы преобразуют энергию химических связей) и передаче ее по пищевым цепям: от продуцентов - к консументам и, далее, - к редуцентам. При этом энергия постепенно рассеивается, но часть ее вместе с остатками организмов переходит в ископаемое состояние, "консервируется" в земной коре, образуя запасы нефти, угля и др.

В осуществлении газовой функции ведущая роль принадлежит зеленым растениям, которые в процессе фотосинтеза поглощают углекислый газ и выделяют в атмосферу кислород. В то же время, большинство живых организмов (и растения в том числе) в процессе дыхания используют кислород, выделяя в атмосферу углекислый газ. Таким образом, участвуя в обменных процессах, живое вещество поддерживает на определенном уровне газовый состав атмосферы.

Окислительно-восстановительная функция тесно связана с энергетической. Существуют микроорганизмы, которые в процессе жизнедеятельности окисляют или восстанавливают различные соединения, получая при этом энергию для жизненных процессов. Велико их значение для образования многих полезных ископаемых. Например, деятельность железобактерий по окислению железа привела к образованию таких осадочных пород как железные руды; серобактерии, восстанавливая сульфаты, образовали месторождения серы.

Концентрационная функция заключается в способности живых организмов накапливать различные химические элементы. Например, осоки и хвощи содержат много кремния, морская капуста и щавель - йод и кальций. В скелетах позвоночных животных содержится большое количество фосфора, кальция, магния. Осуществление данной функции способствовало образованию залежей известняка, мела, торфа, угля, нефти.

Эволюция биосферы. В.И. Вернадский в своих работах подчеркивал, что история возникновения и эволюция биосферы - это история возникновения жизни на Земле. Развитие биосферы идет вместе с эволюцией органического мира - изменяется состав ее компонентов, расширяются границы и т. д.

Живое вещество эволюционирует в сторону усложнения уровня организации, уменьшения прямой зависимости от среды обитания, усовершенствования способов ориентации и передвижения в пространстве.

Перенеся идеи физики о неразрывности пространства и времени на явления природы, В.И. Вернадский объяснил направленность эволюции биосферы: она ограничена пространством, что определяется телом планеты, и направлена в сторону прогрессивного развития, так как необходимо приобрести свойства, которые позволят это ограниченное пространство использовать по возможности максимально.

Особое внимание в своих трудах ученый уделял возрастающему влиянию человека на ход эволюции биосферы. Вернадский подчеркивал, что человек разумный - невиданная по своим масштабам геохимическая сила, которая увеличивает свое влияние по мере развития научной мысли. Еще в 20-х годах прошлого века ученый сумел предугадать многие тенденции воздействия человека на природу. Его теоретические положения о биосфере и месте в ней человека - блестящий пример научного обобщения.

 

 

Этологическая структура популяций — это система отношений между членами одной популяции. Формы совместного существования особей в популяциях разнообразны.

Одинокий образ жизни характерен для многих видов на определенной стадии жизненного цикла.

Семья — группа особей, в которой усиливается связь между потомками и родителями. Она может быть смешанного типа (птицы, некоторые млекопитающие); родительского типа (воспитание осуществляет самец, например африканский страус, колюшка) материнского типа (саламандра, червьяга).

Колония — групповое объединение оседлых животных. Они могут существовать долго или возникать только на период размножения (птицы, морские котики, тюлени, термиты, пчелы, муравьи, сурки, лемминги).

Стая — временное объединение животных одного вида (волки, птицы, рыбы). Наиболее распространенная зграйнисть среди птиц и рыб, из млекопитающих она характерна для многих собачьих. Стаи рыб очень изменчивы по величине, форме, плотности. У птиц стаи формируются во время сезонных перелетов или зимних кормлений (у оседлых и кочевых форм). В стаях млекопитающих большую роль играют вожаки, специфические отношения складываются между отдельными особями, что сближает эти групповые образование со стадами.

Стада — длительные и постоянного объединения животных по сравнению со стаями. Основу группового поведения животных в стадах составляют взаимоотношения доминирования — подчиненности, основанные на индивидуальных различиях между особями.

Система доминирования особей в популяциях может быть разной, а именно:

1) иерархия по схеме «треугольника»: А нападает на В, В — на С, а С подчиняет себе А;

2) линейная иерархия в ряду рангов А — В — С (особи следующего ранга подчинены предыдущем). Подобные отношения возникают в стаях ездовых собак;

3) параллельная иерархия (отдельно среди самцов и среди самок); например, в популяциях обезьян;

4) деспотия (доминирование одной особи над всеми другими (обезьяны)).

Биологическое значение отношений между особями одного вида: защита особей от врагов; воспитание молодежи; получения пищи и т.д.

Экологическая структура популяции — это отношение особей одной популяции в различных экологических факторов. Например: особи в популяции могут отличаться между собой по фенологией, за едой (имаго и личинки); за движением (крылатые и бескрылые формы тлей).




Поделиться с друзьями:


Дата добавления: 2015-04-24; Просмотров: 1220; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.039 сек.