Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Динамика выброса радионуклидов в пространстве. Радионуклиды, образующиеся при работе атомного реактора




Радионуклиды, образующиеся при работе атомного реактора. Авария на ЧАЭС, динамика выброса во времени и в пространстве. Пути воздействия радионуклидов чернобыльского выброса на население республики.

Ядерный топливный цикл включает следующие стадии:

1. добыча урановой руды

2. переработка урановой руды в обогащенное U-235 ядерное топливо

3. производство тепловыделяющих элементов, которые состоят из урана в металлической, карбидной или оксидной форме, заключенного в оболочку из циркония, магниевого сплава или нержавеющей стали

4. использование тепловыделяющих элементов на АЭС (нормальная эксплуатация АЭС)

5. переработка отработанного ядерного топлива (для последующего использования извлеченного делящегося материала, в частности, урана и плутония)

6. переработка и захоронение образующихся радиоактивных отходов.

Обязательно надо помнить о транспортировке радиоактивных материалов для обеспечения всех этих стадий. Загрязнение окружающей среды радионуклидами происходит на всех стадиях ядерного топливного цикла, но наибольший вклад вносят:

а) переработка отработанного ядерного топлива на радиохимических заводах (основное значение имеют радионуклиды С-14, Kr-95, H-3, I-129)

б) нормальная эксплуатация АЭС: при нормальной работе реактора в окружающую среду после прохождения системы очистки удаляются газообразные (частично аэрозольные) и жидкие отходы (основное значение имеют радионуклиды I-131, Cs-137 и 134, Sr-90, а также радиоактивные инертные газы).

В настоящее время рассчитанное значение максимальной подушной дозы за счет использования ядерной энергетики составляет менее 0,2мкЗв в год.

Оценивая опасность нормальной работы АЭС для человека, необходимо отметить, что проживание вблизи угольной теплоэлектростанции мощностью 1000 МВт, с учетом выбросов природных радионуклидов (K-40,U-238,Th-232,Pb-210, Po-210) и химических канцерогенов (бензпирены), в сотни раз более опасно, чем проживание вблизи АЭС аналогичной мощности.

Авария на Чернобыльской атомной электростанции.

Чернобыльская АЭС (ЧАЭС) находится на Украине, в 12 км от южной границы РБ. 26 апреля 1986 г. на 4-ом блоке ЧАЭС произошла крупная авария, которая резко изменила радиоэкологическую ситуацию в Беларуси. По Международной шкале событий на АЭС, предложенной МАГАТЭ и Европейского агентства по атомной энергии, авария на ЧАЭС относится к 7-му классу и именуется глобальной аварией.

Катастрофа на 4-ом блоке ЧАЭС, которая произошла в результате взрыва пара, снесшего крышу здания, разгерметизации активной зоны и возникшего пожара, сопровождалась выбросом в окружающую среду значительного количества радиоактивных веществ (около 10 ЭксаБк). Выброс газо-аэрозольной струи, достигшей 1,5 км, был длительным (10 суток), неравномерным по количеству выбрасываемых радионуклидов, при постоянно меняющихся метеоусловиях (направление ветра, осадки).

Динамика ежесуточного выброса радионуклидов в атмосферу:

Дата Время после аварии, сутки Активность выброса, МКи
26.04.86   12,0
27.04.86   4,0
28.04.86   3,4
29.04.86   2,6
30.04.86   2,0
1.05.86   2,0
2.05.86   4,9
3.05.86   5,0
4.05.86   7,0
5.05.86   8,0
6.05.86   0,1
9.05.86   0,01
23.05.86   0,028

Формирование радиоактивного загрязнения РБ началось сразу после взрыва реактора, т.к. радиоактивное облако перемещалось с воздушными потоками в северо-западном и северном направлениях. Около 70% радиоактивных веществ, выброшенных из разрушенного реактора в атмосферу, в результате сухого и влажного осаждения выпали на территорию Беларуси. При этом 23% территории РБ с 3221 населенными пунктами, в том числе 27 городов, где проживало 2,2 млн. человек (из них более 400 тыс. детей), оказалось загрязненной цезием-137 более 1 Ки/км2.

Радиоактивное загрязнение распространилось по всем областям республики. Оно имеет неравномерный "пятнистый" характер, что обусловлено динамикой выброса и постоянно меняющимися метеоусловиями. Максимальные уровни загрязнения были обнаружены в 30-километровой зоне вокруг АЭС (зоне отчуждения): по цезию-137 - 500 Ки/км2, по стронцию-90 - более 12 Ки/км2, по плутонию-239,240 - около 4 Ки/км2. За пределами зоны отчуждения также выявлены участки с высокими уровнями загрязнения (д. Чудяны Могилевской области). В пределах некоторых населенных пунктов отмечалось большое различие уровней загрязнения почвы цезием-137.

1. Загрязнение территории РБ по цезию-137 - самые пострадавшие области:

а) Гомельская

б) Могилевская

в) Брестская (Столинский, Пинский, Лунинецкий, Дрогичинский, Березовский, Барановичский районы)

В Минской, Гродненской и 4-х населенных пунктах Витебской области содержание цезия-137 в почве превышает 37 кБк/м2 (1 Ки/км2). На остальной территории РБ уровни загрязнения почвы цезием-137 также выше доаварийных значений и лишь в северо-западных районах Витебской области сопоставимы с глобальными выпадениями.

2. Загрязнение территории РБ по стронцию-90 - в отличие от загрязнения цезием-137 имеет более локальный характер:

- уровни содержания стронция-90 в почве выше 5,5 кБк/м2 (0,15 Ки/км2) обнаружены на площади, составляющей 10% от территории РБ

- максимальные уровни стронция-90 обнаружены в пределах 30-км зоны ЧАЭС (около 49 Ки/км2) в Хойникском районе Гомельской области

- наиболее высокое содержание стронция-90 в почвах дальней зоны обнаружено в Чериковском районе Могилевской области и в Ветковском районе Гомельской области

3. Загрязнение территории РБ по плутонию - 238, 239, 240.

- уровни загрязнения почвы изотопами плутония-238, 239, 240 более 0,37кБк/м2 (0,01 Ки/км2) охватывает почти 2% площади республики (Брагинский, Наровлянский, Хойникский, Речицкий, Добрушский и Лоевский районы Гомельской области и Чериковский район Могилевской области)

- наиболее высокий уровень изотопов плутония отмечен в Хойникском районе

Газо-аэрозольное облако имело радионуклидный состав, однозначно характеризующий источник выброса: в него входили изотопы 27 радионуклидов. Радионуклидный состав выпадений, особенно в первые недели после аварии, имеет существенное значение для ретроспективной оценки доз облучения жителей ближайших к станции населенных пунктов, персонала станции и лиц, принимавших участие в аварийно-восстановительных и дезактивационных работах.

В окружающую среду были выброшены:

- летучие радиоактивные инертные газы;

- сотни осколочных продуктов деления, накопившихся в зоне реактора;

- изотопы наведённой радиоактивности за счет веществ, которые сбрасывали на реактор;

- частички ядерного топлива.

Сразу после аварии радиационная обстановка и формирование дозовых нагрузок на население определялись действием короткоживущих радионуклидов (молибдена, технеция, лантана, бария, благородных инертных газов, радиоизотопов йода-131, 132, 133, 134, 135, 123, 125, 126). В окружающую среду было выброшено 50-60% накопившихся в реакторе радиоизотопов йода. Уровни радиоактивного загрязнения короткоживущими радионуклидами йода во многих регионах РБ были настолько велики, что вызванное ими облучение миллионов людей квалифицируется как период "йодного удара". В апреле - мае 1986 года наибольшие уровни выпадения йода-131 имели место в:

а) до 1000 Ки/км2 - в Брагинском, Хойникском, Наровлянском районах Гомельской области

б) до 500 Ки/км2 - в Чечерском, Кормянском, Буда-Кошелевском, Добрушском районах

Значительному загрязнению радиоизотопов йода подверглись также юго-западные регионы РБ (Гомельская и Брестская области), север Гомельской и Могилевской областей.




Поделиться с друзьями:


Дата добавления: 2015-04-24; Просмотров: 835; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.008 сек.