Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Под ударной вязкостью понимается работа, затраченная на разрушение образца от динамического изгиба, отнесённая к площади поперечного сечения образца в месте надреза




Рис. 2.4. Схема хрупкого и вязкого разрушения металла в зависимости от температуры испытания. tи и tн – верхняя и нижняя границы критического температурного интервала хрупкости; S – сопротивление отрыву; σт – предел текучести.

Понижение температуры практически не изменяет сопротивление отрыву S (разрушающего напряжения), но повышает сопротивление пластической деформации σт (предел текучести). Поэтому металлы, вязкие при сравнительно высоких температурах, могут при низких температурах разрушаться хрупко. В указанных условиях сопротивление отрыву достигается при напряжениях, меньших, чем предел текучести. Точка tn. пересечения кривых S и σт, соответствующая температуре перехода металла от вязкого разрушения к хрупкому, получила название критической температуры хрупкости или порога хладноломкости (tn.). Чем выше скорость деформации, тем больше склонность металла к хрупкому разрушению. Все концентраторы напряжений способствуют хрупкому разрушению.

 

22. Диаграмма изотермического распада аустенита для доэвтектоидных, эвтектоидных и заэвтектоидных сталей. Продукты распада переохлажденного аустенита и их свойства.

ОТВЕТ. Диаграмма изотермического распада переохлаждённого аустенита

Если нагретую сталь со структурой аустенита переохладить до температуры ниже 727˚С, то аустенит окажется в неравновесном состоянии. Переохлажденный аустенит через некоторое время (инкубационный период) начнёт распадаться на феррито-цементитную смесь. В зависимости от степени переохлаждения и механизма процесса различают три превращения аустенита: перлитное, мартенситное и промежуточное (бейнитное). Превращения протекают в соответствии с диаграммой изотермического распада переохлажденного аустенита, изображаемой в координатах «температура-время» (рис. 33). На диаграмме, соответствующей эвтектоидной стали:

· Линия А1 отделяет область устойчивого аустенита.

· Линия 1 – линия начала диффузионного распада аустенита, левее этой линии – аустенит переохлажденный, его устойчивость минимальна при температуре около 500˚С.

· Линия 2 – линия конца диффузионного распада, правее этой линии - продукты перлитного (выше 500˚С) и бейнитного (ниже 500˚С) превращений.

· Линия Мн – линия (температура) начала бездиффузионного мартенситного превращения.

· Линия Мк – линия конца этого превращения, для эвтектоидной стали эта температура имеет отрицательное значение.

Рис.33.Диаграмма изотермического распада аустенита

 

23. Цементация стали. Назначение процесса. Стали для цементации. Применяемая термическая обработка, получаемые структура и свойства.

ОТВЕТ. Цементация – это вид химико-термической обработки, заключающийся в диффузионном насыщении поверхностного слоя стали углеродом. Цель цементации - повышение твёрдости и износостойкости поверхности при сохранении вязкой сердцевины.

Цементацию проводят при температуре 930…950°C в углеродсодержащей среде (карбюризаторе). В качестве карбюризатора чаще используют газовые среды, например, эндогаз (20%СО+40%H2+40%N2, с добавкой 5% CH4). Основным источником атомарного углерода является окись углерода: 2СО→CO2+Cат. Атомы углерода, образующиеся в насыщающей среде, адсорбируются на поверхности детали, а затем диффундируют вглубь. Образуется диффузионный слой с повышенной концентрацией углерода, толщина которого зависит от температуры и длительности насыщения и составляет обычно 1…2 мм. Для получения слоя толщиной 1,5 мм цементацию проводят в течение 15 часов. Охлаждение после цементации ведут на воздухе.

Цементации подвергают малоуглеродистые стали (0,1…0,3%С). После цементации в поверхностном слое находится до 0,8…1,1% С, содержание углерода плавно уменьшается по глубине до исходной его концентрации в стали. Соответственно меняется структура от поверхности вглубь слоя от заэвтектоидной (П+Цвт), эвтектоидной (П) к доэвтектоидной (П+Ф).

Для получения окончательной структуры и свойств детали после цементации проводят закалку и низкий отпуск. Для наследственно мелкозернистых сталей закалку можно проводить непосредственно из цементационной печи, подстуживая детали до 860°C, затем дают низкий отпуск при 160…200°C. Для устранения крупнозернистой структуры сталей применяют повторный нагрев под закалку после цементации.

Окончательная структура поверхности изделия – Мотпоствт с высокой твердостью (58..64 HRC). Структура сердцевины углеродистых сталей – сорбит (перлит)+феррит, легированных – бейнит или малоуглеродистый мартенсит.

 

24. Требования предявляемые к клеям, классификация клеев, свойства клеевых соединений деталей.

ОТВЕТ. Требования, предъявляемые к клеям: высокая адгезия к поверхности обеих склеиваемых материалов и высокая когезия частиц самого клея; эластичность и механическая прочность; коррозионная неактивность; нетоксичность; сопротивление старению; хорошие электроизоляционные свойства; трибостойкость; водостойкость и атмосферостойкость; маслостойкость и бензостойкость; большая жизнеспособность и длительный срок храпения; технологичность (склеивание при невысоких температурах, малых давлениях и в короткие сроки); способность обеспечивать герметичность соединения.

Рис. 9.17. Конструкции клеевых соединений

Состав клеев:

· пленкообразующие — основа клееного слоя (термореактивные и термопластичные смолы, каучуки и эфиры целлюлозы);

· растворители — для получения клея определенной вязкости (органические растворители и мономерные вещества);

· отвердители — для получения твердой нерастворимой термостабильной пленки (перекись бензола, гексаметилендиамин, керосиновый контакт и др.);

· наполнители — для уменьшения усадки клеевой пленки и повышения теплостойкости (цемент, алюминиевая пудра, графит и др.);

· пластификаторы — для повышения эластичности пленки (дпбутнл-фталзт и др.);

· стабилизаторы — для сохранения консистенции клеев или их клея­щих свойств.

 

Классификация клеев. Клеи классифицируют по пленкообразующим, типу отверждения и по состоянию.

По составу пленкообразующих принято различать клеи на основе:

  1. термопластичных смол (полиметилметакриловые, полпетирольпые, перхлорвипиловые и др.);
  2. термореактнвных смол (фенолыюформальдегидпые, эпоксидные, кремнийорганнческие и др.);
  3. каучуков (натуральных, нитрильных и др.);
  4. эфиром целлюлозы (нитроцеллюлозные и др.).

По типу отверждения различают клеи холодного (88Н, ВИАМБЗ, К-153 и др.) и горячего (БФ, ВК-32-200 и др.) отверждения;

По состоянию различают:

· жидкие клеи: растворы пленкообразующих (на основе фенольно-формальдегидных, перхлорвиниловых и других смол);

· расплавы пленкообразующих (на основе полиэпоксидных, полиэфирных и других смол);

· частично полимеризованные мономеры (мономер полиметилметакрилата, карбинольный сироп и др.);

· твердые, клеи: твердые клеящие бруски и порошки (эпоксиды);

· клеящие ленты или пленочные клеи (ленты на основе клеев БФ, ВK-32-200 и др.);

· липкие ленты и плёнки (на основе полиизобутеленов, полистирола и т. д.).

Наибольшее распространение имеют клеи на основе смол.

Клеи на основе термопластичных смол. Термопластичные смолы представляют собой полимеры с линейной (или разветвленной) структурой молекул. При нагревании они размягчаются. Большинство из них легко растворяется (полистирол, органическое стекло и др.).

Клеи па основе этих смол применяют в виде растворов последних в органических растворителях или в мономерах, и виде начальных продуктов полимеризации, а также в виде клеящих лент и пленок.

Недостатки. Клеевое соединение на основе термопластичных смол при нагревании расклеивается, т. е. является обратимым.

Особенностью клеевых пленок па основе термопластичных смол является то, что, обладая хорошей эластичностью, они имеют относительно невысокую теплостойкость и механическую прочность.

Клеи на основе термопластичных смол применяют главным образом для склеивания неметаллических материалов несилового назначения. Для склеивания металлических изделий, а также пластмасс и резин применяют клеи на основе модифицированных термопластичных смол (клеи МПФ-1, карбинольный и др.).

Клеи на основе термореактивных смол. Термореактивные смолы — такие полимеры, которые в начальной стадии, имея линейную структуру молекул, при нагревании размягчаются и в растворителях растворяются.

При дальнейшем нагревании, облучении или в присутствии отвердителей при комнатной или повышенной температурах происходит изменение структуры их молекул. Из линейной молекулы переходят в пространственно-сетчатую, благодаря чему смолы переходит и неплавкие нерастворимые конечные продукты. Эти смолы обладающие хорошей теплостойкостью и повышенной химической стойкостью; однако одновременно повышается хрупкость.

Для получения клеев термореактивные смолы используют в начальной стадии, когда структура молекул линейная. Эти клеи существуют в виде растворов линейных полимеров в органических растворителях или мономерах; без растворителей, в виде расплава линейных полимеров с отвердителями; в виде мономерных соединений с отвердителями; а также в виде клеящих лент, брусков и порошков.

Перевод клеевых пленок в неплавкое нерастворимое состояние осуществляется под давлением при нагреве или в присутствии отвердителей при нормальной (или повышенной) температуре в течение определенного времени.

Клеевое соединение на основе термореактивных смол является необратимым и обладает повышенной теплоемкостью, химической стойкостью, влагостойкостью, атмосферостойкостыо, прочностью. Эти клеи применяют для склейки металлов, термореактивных пластмасс, силикатных стекол, керамики и других материалов.

Механические свойства клеевых соединений, получаемых при помощи клеев холодного отверждения, ниже (в особенности при повышенной температуре и влажности), чем в случае применения клеев горячего отверждения.

На практике чаще всего применяют клеи на основе модифицированных смол, так как модифицирование улучшает их свойства. Модифицирование их бутваром уменьшает хрупкость, сохраняя положительные качества.

Наполнители (порошок графита, алюминиевую пудру, цемент и т. д). вводят в клей для уменьшения усадки, которая вызывает внутренние напряжения и снижает прочность клеевого соединения. При склеивании материалом с различным коэффициентом линейного расширения (металлы с неметаллами) также возникают внутренние напряжения, снижающие прочность соединения. В этом случае для прочного клеевого соединения необходимо использовать клеи на основе полиэпоксидных, полиэфирных смол, клеи без растворителей, а также клеи, дающие эластичные пленки.

 

25. Мартенситное превращение и его особенности. Строение и свойства мартенсита. Влияние углерода и легирующих элементов на температуру Мн и Мк.

ОТВЕТ. Мартенситное превращение протекает в интервале температур Мнк (рис. 33).

Рис.33.Диаграмма распада аустенита

Механизм мартенситного превращения – бездиффузионный. При непрерывном быстром охлаждении аустенита со скоростью выше критической (VКР - критическая скорость закалки – минимальная скорость охлаждения для получения мартенсита) диффузии углерода не происходит, идет только полиморфное γ→α превращение:

Feγ(C)0,8%C→ Feα(C)0,8%C.

Образуется мартенсит – пересыщенный твёрдый раствор углерода в α-железе.

Кристаллическая решётка мартенсита - тетрагональная (Рис.34), в ней отношение периодов с/а≠1. Чем больше в мартенсите углерода, тем больше степень тетрагональности (с/а).

Рис.34. Кристаллическая решетка мартенсита

 

Мартенсит – структура закаленной стали, обладает высокой твердостью. Это объясняется искажениями кристаллической решётки, вызванными повышенным содержанием в ней углерода, увеличением плотности дислокаций до 1012см-2. Чем больше в мартенсите углерода, тем выше его твердость. Твердость мартенсита стали с содержанием углерода 0,8% – 63…65 HRC.

Мартенсит имеет игольчатое строение (рис. 35).

 

Рис. 35. Строение мартенсита: а – схема, б – микроструктура

Основные особенности мартенситного превращения:

· превращение А→М идет по бездиффузионному механизму;

· превращение А→М идёт с увеличением объёма, что вызывает значительные остаточные напряжения;

· мартенситное превращение не идёт до конца, в структуре сохраняется остаточный аустенит (АОСТ).

Количество АОСТ зависит от содержания углерода и легирующих элементов в стали, которые влияют на положение точек начала и конца мартенситного превращения (рис. 36). При содержании углерода более 0,6% МК опускается в область отрицательных температур. Чем больше углерода и легирующих элементов, тем ниже МН и МК и тем больше в структуре остаточного аустенита.

 

Рис. 36. Влияние содержания углерода (сплошные линии) и легирующих элементов (пунктирные линии) на температуру мартенситных точек МН и МК

 

26. Виды и назначение отпуска. Фазовые и структурные превращения, протекающие при отпуске.

ОТВЕТ. Отпуск – нагрев закаленной стали до температур ниже АС, выдержка и охлаждение. Цель отпуска – получение окончательной структуры и свойств стали. Отпуск основан на превращениях мартенсита при нагреве, в результате которых происходит изменение структуры и свойств стали (рис. 43).

Различают три вида отпуска (табл.3). Окончательная термообработка, назначаемая изделию для придания требуемых свойств, состоит из закалки и последующего отпуска. Закалку с низким отпуском применяют для деталей машин и инструмента, от которых требуются высокая твердость и износостойкость. Закалку с последующим средним отпуском – для изделий с повышенными упругими свойствами. Закалку с высоким отпуском (улучшение) – для деталей, работающих при повышенных динамических (ударных) и циклических нагрузках.

 

Рис. 43. Влияние температуры отпуска на механические свойства закаленной стали

Таблица 3 Характеристика видов отпуска

Виды отпуска Температура, °С Структура Свойства Применение
Низкий 150…250 Мотп HRC, σв Инструмент,подшипники, детали после ХТО и ТВЧ
Средний 350…500 Тотп σупр, σ-1 Рессоры, пружины
Высокий 500…680 Сотп КС Валы, оси, шатуны



Поделиться с друзьями:


Дата добавления: 2015-04-24; Просмотров: 568; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.03 сек.