Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Потік вектора напруженості та індукції електричного поля. Теорема Остроградського-Гауса




Нехай в просторі існує електричне поле, створене деякими електричними зарядами. Розглянемо деяку поверхню з нескінченно малою площею dS (елементарну поверхню) з одиничним вектором нормалі до поверхні , як зображено на рис.3.3. Нехай в центрі елементарної поверхні напруженість електричного поля рівна .

Елементарним потоком вектора напруженості електричного поля називається скалярна величина, рівна скалярному добуткові вектора напруженості електричного поля і одиничного вектора нормалі на площу елементарної поверхні:

, (3.10)

де – кут між векторами і .

Подібним чином можна дати визначення елементарного потоку вектора індукції електричного поля, який рівний:

. (3.11)

Потік вектора напруженості електричного поля через деяку поверхню S визначається за формулою:

. (3.12)

Він пропорційний числу силових ліній, які пронизують цю поверхню.

Потік вектора індукції електричного поля через деяку поверхню S рівний:

. (3.13)

Розглянемо деякий точковий позитивний заряд , який помістимо в центрі сферичної поверхні S радіусом R (рис. 3.4). Обчислимо потік вектора напруженості електричного поля через цю замкнену поверхню

. (3.14)

Напруженість електричного поля точкового заряду в будь якій точці сферичної поверхні рівна

. (3.15)

Підставимо (3.15) в (3.14), врахуємо, що кут між векторами і в даному випадку .

.

Оскільки для всіх точок сферичної поверхні величина R є постійною то, винісши постійні множники за знак інтегралу, отримаємо:

. (3.16)

Але інтеграл по замкнутій поверхні S - це площа сферичної поверхні, яка рівна:

. (3.17)

Підставимо вираз (3.17) в (3.16):

. (3.18)

Український вчений М.В.Остроградський і німецький вчений К.Гаус довели, що формула (3.18) справедлива для замкненої поверхні довільної форми і довільної кількості електричних зарядів, які знаходяться всередині цієї поверхні. Тому в загальному випадку формулу (3.18) можна представити у вигляді:

. (3.19)

Формула (3.19) – це теорема Остроградського-Гауса для напруженості електричного поля:потік вектора напруженості електричного поля через довільну замкнену поверхню рівний алгебраїчній сумі електричних зарядів, охоплених цією поверхнею, поділеній на діелектричну проникність середовища.

Помножимо рівняння (3.19) на . Враховуючи, що цей множник постійний, внесемо його під знак інтегралу:

. (3.20)

Враховуючи (3.7), отримаємо

. (3.21)

Формула (3.21) це теорема Остроградського-Гауса для індукції електричного поля: потік вектора індукції електричного поля через довільну замкнену поверхню рівний алгебраїчній сумі електричних зарядів, охоплених цією поверхнею.

Розглянемо випадок коли електричні заряди розподілені в просторі неперервно з деякою об’ємною густиною . Об’ємною густиною електричного зарядуназивається фізична величина, рівна електричному зарядові в одиниці об’єму простору:

. (3.22)

Визначимо з цієї формули dq:

. (3.23)

Проінтегрувавши вираз (3.23) по деякому об’єму V визначимо сумарний електричний заряд який міститься в цьому об’ємі:

. (3.24)

З врахуванням формули (3.24) теорему Остроградського-Гауса (3.19) і (3.21) у випадку неперервного просторового розподілу зарядів можна представити у вигляді:

. (3.25)

. (3.26)

У формулах (3.25) і (3.26) інтегрування здійснюється по всьому об’єму V який обмежений замкненою поверхнею S.




Поделиться с друзьями:


Дата добавления: 2015-05-23; Просмотров: 1196; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.023 сек.