Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Угловое ускорение по крену




Здесь сужение сильно влияет на момент инерции самолета относительно продольной оси, который, практически равен моменту инерции крыла. При вычислении момента инерции берется интеграл от произведения элементарной погонной массы на квадрат расстояния от оси. Допустим, у нас крыло с сужением 2. Тогда погонная масса на конце крыла будет вчетверо меньше, чем у корня (площадь профиля с вдвое меньшей хордой меньше вчетверо). В этом случае момент инерции крыла с сужением 2 будет теоретически в 16 раз меньше равного ему прямоугольного крыла. На практике разница меньше, из-за, к примеру, одинаковой по размаху толщины обшивки. Тем не менее, крыло с сужением будет набирать угловую скорость по крену во много раз быстрее. Кстати, гасить угловую скорость по крену такое крыло будет тоже быстрее, что важно для точного выхода пилотажного самолета из серии бочек или из штопора.

Для учебно-тренировочногосамолета излишняя маневренность по крену крайне вредна, потому что требует от пилота высокой квалификации и автоматизма в управлении моделью по крену.

Помимо сужения, на указанные характеристики еще сильнее влияет относительное удлинение крыла. Настолько сильно, что при большом удлинении отмеченные зависимости уже не столь значимы. Вместе с тем, большие удлинения характерны для неманевренных самолетов. Поэтому динамические характеристики там и не важны.

 

 

 

Поперечная управляемость

 

СПИРАЛЬНАЯ НЕУСТОЙЧИВОСТЬ

Если атмосферное возмущение (например, вызванный тепловой конвекцией восходящий поток воздуха) немного накренит самолет на правое крыло, то он начнет разворачиваться вправо. Это движение по кривой разворота будет увеличивать относительную скорость движения и подъемную силу на левом крыле и уменьшать их на правом крыле, вследствие чего самолет еще более накренится на правое крыло и будет разворачиваться еще быстрее. Это явление называется спиральной неустойчивостью. Однако скорость нарастания спиральной неустойчивости мала, и летчик без труда контролирует это движение в условиях хорошей видимости ориентиров.

В отсутствие видимости, например при полете в густом тумане или в сплошной облачности, летчик не сможет контролировать возникновение и развитие спиральной неустойчивости, так как без приборов он не в состоянии определить, куда повернул самолет и повернул ли он вообще. По мере нарастания крена вертикальная составляющая подъемной силы становится меньше, чем вес самолета, самолет начинает проваливаться и быстро теряет высоту. Попытки уменьшить скорость снижения, используя руль высоты, чтобы поднять выше нос самолета, приводят к еще большему увеличению крутизны спирали. Скорость снижения быстро возрастает на последней стадии такого неконтролируемого движения, которое летчики называют «кладбищенской спиралью».

Первые меры, направленные на исключение этой ситуации, сводились к попыткам улучшить характеристики спиральной устойчивости самолета посредством уменьшения площади его вертикального оперения и увеличения угла поперечного V, как того требуют теория динамической устойчивости и результаты экспериментальных исследований на моделях самолетов. Однако оказалось, что эти меры приводят к ухудшению поперечной управляемости самолета, возникновению сваливания и затягиванию в штопор, которые еще более опасны, чем спиральная неустойчивость.

 

 

 

 

Спиральная неустойчивость самолета при повышенной путевой устойчивости относительно поперечной

Колебательная неустойчивость при очень хорошей поперечной устойчивости (большое поперечное V крыла) и слабой путевой устойчивости

.

Отклонение элеронов должно быть в 2 - 3 раза меньше отклонения руля направления.

ФЛАТТЕР

Крыло может совершать колебания двух основных видов: изгибные и крутильные. Однако вследствие несовпадения линий центров тяжести с линией центров жесткости сечений чисто изгибные или чисто крутильные колебания крыла практически невозможны. Вне зависимости от того, каков начальный импульс - изгибный или крутильный, колебания всегда совместны - изгибно-крутильные. Рассмотрим упрощенную картину развития изгибно-крутильного флаттера крыла (см. рис. 7.2.). Предположим, что под действием какого-нибудь возмущения крыло с закрепленным неподвижно элероном прогнулось вверх, а затем это возмущение исчезло

 

Каждое сечение крыла характеризуется:
- положением центра тяжести, где приложена сила тяжести;
- положением центра жесткости, где приложена сила упругости;
- положением фокуса, где приложены приращения аэродинамических сил, действующих на крыло.
При отклонении крыла от нейтрального положения на него будет действовать сила упругости, стремящаяся возвратить крыло в нейтральное положение. Под действием этой силы крыло, отогнутое вверх, начинает двигаться вниз, а возникшая в начале движения сила инерции, приложенная в центре тяжести, будет закручивать крыло относительно его центра жесткости. При этом угол атаки крыла станет отрицательным.
Это изменение угла атаки вызовет дополнительную аэродинамическую силу, направленную вниз и приложенную в фокусе крыла, которая будет способствовать движению крыла вниз и его дальнейшему закручиванию. Благодаря этому в момент, когда крыло достигнет нейтрального положения и сила упругости станет равной нулю, крыло продолжит свое движение, а угол его закручивания будет максимальным отрицательным. После того, как крыло, пройдя нейтральное положение, начнет отгибаться вниз, возникающая силы упругости начнет замедлять скорость прогиба крыла вниз, а сила инерции - уменьшать закрутку крыла, уменьшая угол атаки. С уменьшением угла атаки крыла будет уменьшаться дополнительная аэродинамическая сила и замедляться движение крыла вниз. Крыло отогнется вниз и займет крайнее нижнее положение. В зависимости от величины закручивания крыла и дополнительной аэродинамической силы прогиб крыла вниз может оказаться больше, чем его начальный отгиб вверх. При дальнейшем движении крыла вверх картина действия сил повторится, но величина отгиба крыла вверх будет уже большей. Это вызовет увеличение силы упругости, а, следовательно, и скорости возвращения крыла к нейтральному положению. В свою очередь последнее вызовет увеличение инерционной силы, закручивающей крыло на этапе его колебаний, и соответственное увеличение дополнительной аэродинамической силы. Изгибные колебания крыла и его закручивание будут возрастать и приведут к быстрому разрушению конструкции крыла.
При этих колебаниях возникают, конечно, и демпфирующие силы, тормозящие развитие колебаний. К ним относятся силы трения в конструкции, аэродинамические силы сопротивления, внутренние силы трения в материале конструкции.
Так, при движении крыла, например, вниз, возникает вертикальная скорость, которая, складываясь геометрически со скоростью потока воздуха, обтекающего крыло, вызывает увеличение угла атаки крыла. При этом возникает дополнительная аэродинамическая сила, направленная против движения крыла. Такая сила называется аэродинамической силой, демпфирующей колебания крыла.
До тех пор, пока работа демпфирующих сил, величина которых примерно пропорциональна скорости полета самолета, больше работы возбуждающих колебания дополнительных аэродинамических сил, пропорциональных квадрату скорости полета, возникшие колебания будут затухать.
При скорости, равной критической скорости флаттера, работа возбуждающих колебания сил оказывается равной работе демпфирующих колебания сил. При скорости полета больше этой критической скорости возникает флаттер.
С увеличением жесткости крыла критическая скорость изгибно-крутильного флаттера возрастает. Даже незначительное смещение центра тяжести вперед приводит к заметному увеличению критической скорости флаттера.
Смещения центра тяжести вперед можно достичь конструктивными мерами, в частности облегчением конструкции хвостовой части крыла или установкой в носке специальных противофлаттерных грузов - балансиров. Для повышения эффективности балансиров их устанавливают в виде болванки в носке на конце крыла или выносят вперёд в виде хорошо обтекаемой штанги.
Большое влияние на критическую скорость флаттера оказывают агрегаты и грузы, размещенные на крыле: двигатели, подвесные топливные баки, блоки с оборудованием т.п. Например, двигатели, вынесенные вперед, подобно балансирам увеличивают критическую скорость флаттера. Топливо, размещенное в отсеках крыла, также влияет на критическую скорость флаттера. С увеличением высот полета критическая скорость флаттера возрастает.

Изгибно-элеронный флаттер крыла

 

 

Изгибно-элеронным флаттером крыла называют такую форму колебаний, при которой имеют место изгиб крыла и отклонение элерона. Кручение крыла при этом предполагается настолько малым, что им можно пренебречь. Рассмотрим физическую картину этого вида флаттера.
Будем считать, что на крыле расположен несбалансированный элерон, у которого центр тяжести расположен позади оси вращения. Для простоты предположим, что элерон аэродинамически скомпенсирован, т.е. его отклонение не вызывает моментов аэродинамических сил, препятствующих этому отклонению. Предположим также, что возможно произвольное отклонение элерона при неподвижной ("зажатой") ручке управления за счет упругости проводки управления и люфтов.
Пусть, как и в случае изгибно-крутильного флаттера, крыло под действием какого-то возмущения прогнулось вверх, а затем это возмущение исчезло, и крыло было предоставлено само себе (см. рис. 7.3.). Под действием силы упругости конструкции крыла оно начнет двигаться к нейтральному положению вниз. Вследствие действия сил инерции центр тяжести элерона будет отставать от перемещения крыла, и элерон отклонится вверх. Это вызовет появление дополнительной аэродинамической силы, приложенной в фокусе крыла и направленной вниз. Ее величина пропорциональна отклонению элерона. Эта сила заставит крыло пройти нейтральное положение и отклониться вниз. Сила упругости будет препятствовать этому движению, и тормозить его. Возникшая при этом сила инерции начнет уменьшать отклонение элерона, так что в крайнем нижнем положении крыла элерон окажется в нейтральном положении.
Под действием силы упругости крыло начнет отклоняться вверх, а сила инерции будет отклонять элерон вниз. Появится аэродинамическая сила, направленная вверх, и картина развития флаттера повторится.
Как и в случае изгибно-крутильного флаттера, возбуждающей является аэродинамическая сила. Если скорость полета превысит критическую, когда работа возбуждающей аэродинамической силы окажется больше работы сил, демпфирующих колебания, колебания начнут возрастать и могут привести к аварии. Скорость, при которой наступает явление саморазвивающихся колебаний, когда крыло изгибается и одновременно самопроизвольно отклоняются элероны, изменяя аэродинамическую силу и все больше раскручивая крыло, называется критической скоростью изгибно-элеронного флаттера.
Как отмечалось выше, изгибно-элеронный флаттер возможен, если при колебаниях крыла элерон отклоняется в сторону, обратную движению крыла. Происходит это вследствие того, что элерон имеет возможность поворачиваться относительно оси шарниров и центр тяжести у несбалансированного элерона находится позади его оси вращения. В соответствии с этим основные меры, направленные на повышение критической скорости изгибно-элеронного флаттера, сводятся к весовой балансировке элеронов, увеличению жесткости проводки управления и устранению люфтов в ней. Критическая скорость флаттера зависит также от расположения элерона по размаху, увеличиваясь при смещении элерона от конца в среднюю часть крыла.
При весовой балансировке центр тяжести элерона совмещают с осью вращения или добиваются, чтобы он находился впереди оси вращения. В соответствии с этим говорят о 100%-ной весовой балансировке или перебалансировке элеронов. Достигается балансировка с помощью грузов (балансиров), устанавливаемых перед осью вращения элерона. Балансировка может осуществляться сосредоточенными грузами, вынесенными вперед на кронштейне, или грузом, равномерно распределенным по размаху элерона. В случае балансировки равномерно распределенным по размаху грузом все сечения элерона балансируются примерно одинаково, но вес груза получается большим, составляя иногда до 50% веса элерона. При балансировке сосредоточенными грузами вес последних требуется значительно меньший, однако балансировка сечений элерона при этом существенно неодинакова: сечения, где расположен груз, оказываются перебалансированными, а все другие - несбалансированными. При колебаниях крыла это приводит к возникновению сил, скручивающих элерон, что снижает эффект балансировки.

 

Флаттер оперения


Оперение - поверхность, подобная крылу. Естественно поэтому, что основные виды флаттера оперения имеют такую же природу, как и рассмотренные выше изгибно-крутильная и изгибно-элеронная формы флаттера крыла. Однако форм колебаний у оперения значительно больше, так как к собственным деформациям оперения добавляются еще изгиб и кручение фюзеляжа. Основными средствами повышения критической скорости флаттера оперения являются увеличение жесткости оперения и фюзеляжа, а также весовая балансировка стабилизатора и рулей.
Недостаточная жесткость при кручении стабилизатора, обусловленная спецификой его крепления, требует применения эффективных мер для повышения критической скорости флаттера. С этой целью на концах половин стабилизатора устанавливают балансировочные (противофлаттерные) грузы, возможно применение специальных демпферов. Иногда часть концевой поверхности оперения (киля, управляемого стабилизатора) срезают. Несущие свойства этой части оперения невысоки, поэтому эффективность его практически не снижается. Вместе с тем центры тяжести концевых сечений оперения смещаются вперед, благодаря чему уменьшается потребный вес противофлаттерного груза, критическая скорость флаттера повышается.
Наличие гидроусилителя в системе управления стабилизатором может приводить к образованию еще более сложных колебательных систем, в которых наряду с оперением и фюзеляжем участвует и гидравлический привод.

 




Поделиться с друзьями:


Дата добавления: 2015-05-08; Просмотров: 1467; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.015 сек.