Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Таким образом, мы видим, что для гидролиза растительного крахмала необходима кислая среда, и она создается в зерне аскорбиновой кислотой. 3 страница




На крахмале мы пока и остановимся, чтобы на примере растений нам легче было бы понять, почему же так трудно мобилизуется глюкоза из нашего животного крахмала - гликогена.

Итак, растения нам подсказывают, что для успешной мобилизации глюкозы из крахмала необходима тоже прежде всего кислая среда. По-видимому, точно так же и для мобилизации глюкозы из гликогена (животного крахмала) необходима кислая среда в месте гидролиза последнего.

 

Здесь я хочу сказать, что не так просто перекинуть связующую нить с тех же растений на организм человека. Если растениям и нужна кислая среда для ускорения гидролиза крахмала, то многие мои оппоненты могут отвергнуть эту аналогию на том только основании, что растения и животные относятся к разным царствам. Все это верно. Но законы химии все же одинаково действуют не только в разных биологических царствах, но и в неорганическом мире.

Очень часто и терминология в науке не упрощает саму суть явления, а нередко даже вводит нас в заблуждения. Например, одно и то же химическое действие - ускорение химической реакции, в неорганической химии называется катализом, а в органической - ферментативним катализом. А сами вещества, ускоряющие реакции, называются соответственно катализаторами и ферментами, а в медицине еще и энзимами. Ясно, что ферменты и энзимы - это те же катализаторы, только биологические. Но там, где начинается биология или медицина, там, мне кажется, кончается четкая определенность и начинается нечто необъяснимое и загадочное. Если мы будем говорить о катализаторах, которые используются, например при производстве серной кислоты, то нас обязательно будут интересовать условия, при которых они проявляют максимальную активность. Мы будем стремиться выполнять эти условия, иначе это скажется и на производительности технологических установок, и на экономических показателях всего производства. Но если мы заговорим о ферментах, то речь пойдет о чем угодно, но никак не об условиях, при которых они проявляют свою максимальную активность. И объясняется это не только недостаточными знаниями о механизме действия ферментов, но и каким-то особым нашим отношением к живым организмам. Нам кажется, что последние всегда в состоянии самостоятельно создать оптимальные условия для работы ферментов. Но это наше заблуждение.

По-видимому, ни один процесс в организме человека не обходится без участия множества ферментов. Ферменты катализируют сотни реакций, идущих всего лишь в одной клетке. И работают они чрезвычайно быстро - ферментативная реакция протекает в 106 - 1012 раз быстрее, чем спонтанная некатализируемая реакция в водном растворе. В живых организмах в присутствии ферментов за секунды, а иногда и за доли секунд, осуществляются сложные последовательные реакции, для проведения которых в химической лаборатории потребовались бы дни, недели, а то и месяцы работы.

'Ферменты есть, так сказать, первый акт жизнедеятельности, - говорил академик И. П. Павлов. - Все химические процессы направляются в теле именно этими веществами, они есть возбудители всех химических превращений. Все эти вещества играют огромную роль, они обусловливают собой те процессы, благодаря которым проявляет-

 

ся жизнь, они и есть в полном смысле возбудители жизни. Они составляют основной пункт, центр тяжести физиолого-химического знания.

Все ферменты состоят из блоков. Мы не будем здесь рассматривать механизм действия ферментов. Для нас достаточно лишь знать, что от эффективности работы ферментов зависит не только нормальный обмен веществ в нашем организме, но и в целом наше здоровье, а поэтому для нас важно знать какие факторы оказывают влияние на работу ферментов. Главными из таких факторов являются температура и концентрация ионов водорода в среде, в которой протекает ферментативная реакция. Но температура тела у человека практически не изменяется и поэтому нам не здесь следует искать причины возможной неэффективной работы наших ферментов. Более зависима работа ферментов от концентрации ионов водорода в среде, в которой протекают ферментативные реакции. Каждый фермент проявляет максимум своего действия при определенном значении рН, которое называется рН-оптимумом. Незначительные изменения рН замедляют действие ферментов или совсем его прекращают.

Кривые, описывающие зависимость активности ферментов от рН среды, имеют резко вытянутую колоколообразную форму. Многие ферменты имеют свою специфическую реакцию среды, даже в одной клетке в разных ее отсеках может быть разная концентрация ионов водорода. Но базовой реакцией среды для всего организма является, конечно же, реакция крови. При достаточной концентрации ионов водорода в крови их будет достаточно и во всех клетках организма. Оптимальной реакцией крови следует считать реакцию, имеющую рН, равный 6,9.

Снова возвратимся к растениям, а от них перейдем к организму человека. Увеличение содержания аскорбиновой кислоты в зародыше пшеницы во время прорастания этого зерна говорит нам лишь о создании кислой среды в месте гидролиза крахмала. А сам процесс гидролиза протекает при участии множества ферментов. Кислая среда лишь благоприятствует работе ферментов. Точно так же сложно протекает и распад гликогена в организме животных. В мобилизации глюкозы из гликогена принимают участие и гормоны глюкагон и адреналин. Глюкагон (гормон поджелудочной железы) постоянно участвует в повышении уровня глюкозы в крови (в периоды между приемами пищи и в периоды голодания), а адреналин (гормон мозгового слоя надпочечников) способствует повышению уровня глюкозы в крови при стрессовых ситуациях. Оба эти гормона как бы включают механизм гидролиза гликогена, но сам процесс гидролиза все равно осуществляется через посредство ферментов, а последним, как мы уже знаем, необходима кислая реакция крови, а она у нас чаще всего щелочная. Поэтому мы и не можем получить необходимое нам количество глюкозы из гликогена в промежутках между очередными приемами пищи и на-

 

растающий голод (снижение концентрации глюкозы в крови) заставляет нас садиться за обеденный стол в то время, когда запасы гликогена у нас израсходованы лишь незначительно.

Для иллюстрации этого вывода я приведу цитату из книги Дж. Армстронга 'Живая вода': 'А теперь о пользе втирания мочи и о подробностях моего самолечения. Во время моей первой голодовки на воде и моче сердцебиение у меня было таким сильным, что казалось, будто у меня было не одно сердце, а два. Тогда я начал натирать мочой голову, шею и другие части тела - сердцебиение прекратилось. Я понял, что можно продолжать голодание, не прерывая своей обычной деятельности. Мои пациенты с кожными заболеваниями при растирании мочи во время голодания продолжали обычную работу и никто не догадывался, что они голодают. После растирания мочой даже врач с помощью аппаратуры не смог бы обнаружить по моему сердцу, что я ничего не ел. Однако он это обнаружил бы, если бы я не растирался

мочой

Я уже писал, что растирание мочой дает более эффективное крови, нежели прием мочи внутрь. Так вот, при достаточном подкислении крови человек не испытывает чувства голода только потому, что он получает необходимую ему глюкозу из имеющихся у него запасов гликогена. И учащение сердцебиения при недостатке в нашей крови глюкозы объясняется прежде всего тем, что наш мозг в первую очередь начинает испытывать голод, ведь он питается практически одной глюкозой, да еще и в больших количествах. И первая реакция мозга на глюкозовый голод - подача команды сердцу на интенсификацию кровообращения - только таким путем мозг пытается обеспечить себя достаточным питанием.




Поделиться с друзьями:


Дата добавления: 2015-05-08; Просмотров: 339; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.014 сек.