Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Склад ядра атома. Енергія зв’язку атомних ядер




Запас енергії коливальної системи, яка знаходиться у рівновазі з електромагнітним випромінюванням, не може набувати довільних значень. Мінімальну кількість енергії, яку система може поглинати або випромінювати, називають квантом енергії.

Шкала електромагнітних хвиль.

 

Довжина, м Частота, Гц Найменування
106-104 3∙102-3∙104 Наддовгі
104-103 3∙104-3∙105 Довгі (радіохвилі)
103-102 3∙105-3∙106 Середні (радіохвилі)
102-101 3∙106-3∙107 Короткі (радіохвилі)
101-10-1 3∙107-3∙109 Ультракороткі
10-1-10-2 3∙109-3∙1010 Телебачення (НВЧ)
10-2-10-3 3∙1010-3∙1011 Радіолокація (НВЧ)
10-3-10-6 3∙1011-3∙1014 Інфрачервоне випромінювання
10-6-10-7 3∙1014-3∙1015 Видиме світло
10-7-10-9 3∙1015-3∙1017 Ультрафіолетове випромінювання
10-9-10-12 3∙1017-3∙1020 Рентгенівське випромінювання (м'яке)
10-12-10-14 3∙1020-3∙1022 Гамма-випромінювання (жорстке)
≤10-14 ≥3∙1022 Космічні промені

 

35. Квантові властивості світла. Гіпотеза Планка. Світлові кванти.
Атоми випромінюють енергію – неперервно, а порціями – квантами.
Фотоефект – це явище випускання електронів з р-ни під дією світла. Вивчав це явище Столетов.
Закони фотоефекту: ① кіл-сть електронів, які вириваються світлом з поверхні за 1с прямо пропорційна світловому потоку.
② найбільша швидкість вибитих світлом електронів визначається тільки частотою світла і не залежить від його інтенсивності.
③ для кожної р-ни існує межа – мінімум частота світла.

36. Рівняння фотоефекту. Застосування фотоефекту.
Завдяки відкриттю фотоефекту стало можливим:

1) звукове кіно;

2) створення різноманітних апаратів, які слідкують за освітленістю вулиць, своєчасно запалюють і гасять бакени на річках, працюють "контролерами" в метро, рахують готову продукцію, контролюють якість обробки деталей;
3) перетворення світлової енергії в електричну за допомогою фотоелементів.
Промисловість виготовляє фотоелементи двох типів - вакуумні та напівпровідникові.
1. Вакуумні фотоелементи із зовнішнім фотоефектом. Дно невеликої скляної колби з глибоким вакуумом покривають цезієм і приєднують до "-" батареї. У центрі колби знаходиться металеве кільце, яке з'єднують із затискачем "+" батареї. Унаслідок освітлення приладу світлом із цезію вириваються електрони і летять до металевого кільця. У результаті в центрі фотоелемента виникає струм.
2. Напівпровідникові фотоелементи з внутрішнім фотоелементом: фотоопори, фотодіоди, сонячні батареї та ін. (рис.7.6). Це напівпровідники із власною чи домішковою провідністю. У сонячних батареях створюють р-п - перехід, доступний для світла. Під час освітлення фотоелемента змінюється концентрація вільних носіїв зарядів, а з нею і струм. Якщо в сонячній батареї світло потрапить в п-р - перехід, то між р і п ділянками виникає напруга.
Найважливіше значення фотоефекту полягає в тому, що його відкриття і дослідження стали експериментальною основою квантової теорії. Саме за пояснення законів фотоефекту на основі квантової теорії А. Ейнштейну було присуджено Нобелівську премію.

37. Люмінесценція (хімічна для світла).
Люмінесце́нція
— відмінне від теплового світіння збудженої речовини. Інша назва – холодне світло.
Люмінесценція може продовжуватися ще дуже довго після збудження речовини. При збудженні речовини тим чи іншим способом, її молекули (у випадку газу чи рідини) переходять у високоенергетичні квантові стани. У випадку напівпровідників електрони переходять із валентної зони у вільні стани зони провідності, залишаючи у валентній зоні дірку. Збуджений стан може випромінити фотон негайно, повернувшись у основний стан або ж втратити частину енергії в результаті зіткнень. Процеси поступової втрати енергії збудженою частинкою називаються релаксацією. Релаксація продовжується, доки збуджена частка не прийде до стану, коли подальша поступова втрата енергії неможлива. Такі стани характерні для кожної речовини й визначають спектр люмінесценції. Збудження може існувати в такому стані лише певний час, а потім відбувається перехід до основного стану, який супроводжується випромінюваннями кванта світла — фотону. Кожен люмінофор характеризується своїм спектром люмінесценції, на який майже не впливає спосіб збудження.

38. Квантові генератори та їх застосування.
Квáнтовий генерáтор
- загальна назва джерел електромагнітного випромінювання, що працюють на основі вимушеного випромінювання атомів і молекул. Залежно від того, хвилі якої довжини випромінює квантовий генератор, він може називатися по різному: лазер, мазер, разер, газер.

39. Основні положення спеціальної теорії відносності. Швидкість світла у вакуумі.
Теорії відносності описує рух тіл з великими швидкостями, близькі до швидкості світла. В її осн. Лежать 2 принципи(постулати): 1) у всіх інформаціальних системах відліку всі фізичні явища відбуваються однаково.
2) швидкість світла однакова у всіх інерціальних системах відліку, не залежить ні від швидкості руху джерела, ні від швидкості руху приймача світла.
Швидкість світла у вакуумі є граничною.

40. Ядерна модель атома. Квантові постулати Бора.
Маса електрона є приблизно в 2000 разів меншою за масу одного з найлегших атомів - атома водню - і дорівнює me = 9,1·10-31 кг. Виходячи з цих даних, Томсон запропонував модель атома, згідно якою атом є зарядженою кулею радіусом R 10 -8 см, всередині якої знаходяться електрони. Більш складні атоми в додатно зарядженій кулі мають декілька електронів. Таким чином, атом подібний пиріжка, роль родзинок при цьому відіграють електрони.
Однак модель атома Томсона виявилась повністю відмінною від моделі, яку запропонував Резерфорд у результаті своїх досліджень. Резерфорд 1906 року запропонував модель, згідно з якою будова атома дуже схожа на будову сонячної системи. Щоб перевірити правильність своєї теорії, він провів низку дослідів, які називають дослідами Резерфорда (рис. 7.7). Він зондував атоми золота швидкорухомими ядрами гелію (a частинками).
1. Атомна система може перебувати тільки в особливих стаціонарних, або квантових станах, кожному з яких відповідає певна енергія En. У стаціонарному стані атом енергію не випромінює.
2. Перехід атома з одного стаціонарного стану в інший супроводжується випромінюванням чи поглинанням фотонів.
3. Радіуси r n стаціонарних станів задовольняють умову.

41. Поглинання і випромінювання енергії атомом.
Виходячи з постулатів Бора, можна пояснити процес поглинання і випромінювання енергії атомами. Якщо атом поглинає енергію, то при цьому він переходить у збуджений стан. Його електрон може підніматися на вищу орбіту. Якщо існують вакансії для електрона ближче до ядра, то з часом електрон займає їх, переходячи на більш низький енергетичний рівень. Енергія, яка при цьому вивільняється, випромінюється атомом у вигляді кванта світла.
Якщо світло випромінюють розріджені гази, то атоми газу знаходяться так далеко один від одного, що не чинять ніякого впливу на випромінювання сусідніх атомів, і у спектрі такого джерела будуть спостерігатись лише певні лінії. Цей спектр називають лінійчастим спектром.
Якщо світло випромінюють тверді тіла, рідини чи дуже сильно стиснені гази, то на випромінювання кожного з атомів суттєво впливають сусідні атоми. Унаслідок цього можна спостерігати розмивання ліній в спектрі випромінювання і плавний перехід від одного кольору до іншого. Так виглядає суцільний спектр.
Лінійчастий спектр кожного хімічного елемента є індивідуальним. Цю властивість використовують для спектрального аналізу сполук, оскільки кожний атом цього елемента в його складі випромінює свої лінії, які не зливаються з лініями інших елементів. Цю речовину обов'язково потрібно перевести в газоподібний стан і дуже нагріти, щоб вона світилась. Прилади, які використовують для спектрального аналізу, називають спектрографами.

42. Спектральний аналіз та його застосування.
Спектральний аналіз
— сукупність методів визначення складу (наприклад, хімічного) об'єкта, заснований на вивченні спектрів взаємодії матерії з випромінюванням: спектри електромагнітного випромінювання, радіації, акустичних хвиль, розподілу за масою та енергією елементарних частинок та інше. Спектральний аналіз ґрунтується на явищі дис­персії світла. Традиційно розмежовують:

§ атомарний та молекулярний спектральний аналіз,

§ «емісійний» — за спектром випромінення та «абсорбційний» — за спектром поглинання,

Най­важливішим джерелом інформації про більшість космічних об'єктів є їхнє випроміню­вання. Дістати найцінніші й найрізноманітніші відомості про тіла дає змогу спектральний аналіз їхнього випромінювання. За допо­могою цього методу можна встановити якісний і кількісний хіміч­ний склад світила, його температуру, наявність магнітного поля, швидкість руху та багато іншого.
Для одержання спектрів застосовують спектроскоп та спектрограф. У першому спектр розглядають, а у другому його фотографують. Спектрограма — фотографія спектра.

До складу ядра атома входять нейтрони і протони. Заряд протона дорівнює заряду електрона тільки з протилежним знаком. Маса спокою будь-якого ядра менша від суми мас спокою окремих протонів і нейтронів, що складають його.
Енергією зв'язку складної системи зв'язаних об'єктів називають різницю між сумою енергій складових частин, взятих окремо й енергією системи у зв'язаному стані.

44. Радіоактивність, α, β,γ – випромінювання. Закон радіоактивного розпаду.
Радіоактивністю називають самовільне (спонтанне) перетворення ядер нестійких ізотопів одних елементів в ядра ізотопів інших елементів, що зумовлено внутрішніми причинами та супроводжується α- β- γ- випромінюванням, а також інших частинок (нейтронів, протонів). До радіоактивних процесів належать:
1. α – розпад;

2. β – розпад;

3. γ – випромінювання;

4. спонтанний поділ тяжких ядер;

5. протонна радіоактивність;

Радіоактивність, яка спостерігається в ядрах, що існують у природних умовах, називається природною.

Радіоактивність ядер, які отримані за допомогою ядерних реакцій, називається штучною.

Природні радіоактивні перетворення ядер, які відбуваються самочинно, називаються радіоактивним розпадом.

α – розпад: перетворення атомних ядер, яке супроводжується випусканням α – частинок.

45. Одержання і використання радіоактивних ізотопів.
У 1932 р. французькі фізики Ірен і Фредерік Жоліо-Кюрі першими штучно одержали радіоактивні речовини, бомбардуючи -частинками нерадіоактивні речовини. Приклад: , тобто утворився нестійкий (радіоактивний) фосфор. Принципової різниці між природною і штучною радіоактивністю немає. Для штучно одержаних радіоактивних ізотопів властиві всі процеси, що ведуть до утворення - і -частинок та -променів.
Сфера застосування радіоактивних ізотопів дуже широка: біологія, хімія, медицина, металургія, дефектоскопія та ін. 

46. Поглинена доза випромінювання та її біологічна дія. Захист від опромінення. Дозиметрія.
При формуванні дози опромінення в біологічному середовищі розрізняються безпосередньо іонізуючі частки і побічно іонізуючі частки. Безпосередньо іонізуючі частки - це заряджені частки: альфа-частки (ядра гелію), бета-частки (електрони, позитрони) і ін., а побічно іонізуючі частки - це незаряджені частки: нейтрони, гамма-кванти.

При опроміненні біологічних індивідуумів розрізняють гостре (що виявляється ранніми ефектами опромінення) і пролонговане (тривале), однократне і багатократне (фракціоноване) опромінення. Як гостре, так і пролонговане опромінення може бути однократним або фракціонованим. Крім того, можливе хронічне опромінення, яке можна розглядати як різновид фракціонованого, але такого, що здійснюється тривалий час при дуже малих потужностях дози.

Дозу, що формується випромінюванням в речовині можна оцінити, вимірюючи, наприклад, викликане ним підвищення температури. Проте, навіть при дозах небезпечних для життя людини, енергії, що виділяється, виявляється недостатньо для нагріву опромінюваного організму на тисячні долі градуса. Тому при вивченні дії випромінювання на біологічні об'єкти, дози оцінюють із застосуванням чутливіших методів дозиметрії.

Розподіл дози в часі для різних по лінійній передачі енергії (ЛПЕ) випромінювань може значно розрізнятися і по-різному позначатися на радіобіологічних ефектах опромінення. Це виявляється особливо на віддалених наслідках біологічної дії випромінювань різних ЛПЕ, у зв'язку з чим, визначенню тимчасового розподілу дози в радіобіології приділяється серйозна увага.

Іонізуюче випромінювання, взаємодіючи з речовиною, передає йому енергію малими, кінцевими порціями. Передача енергії є процесом випадковим. Випадковою є і енергія, передавана речовині в кожному акті взаємодії. Тому поглинена в деякому об'ємі речовини енергія при багатократному опроміненні його в тотожних умовах однією і тією ж дозою іонізуючого випромінювання одного вигляду, строго кажучи, є дещо різною. Необхідно пам'ятати про принципово завжди присутні, але не завжди істотні флуктуації (розкиди) енергії, що поглинається (і, відповідно, поглиненої дози).

У випадку малих опромінюваних об'ємів, порівняних по величині з об'ємом окремих клітин, або субклітинних структур, можлива ситуація, при якій флуктуації поглиненої дози виявляються порівняними і навіть перевершують величину дози. У таких умовах зіставлення виходу радіаційно-індукованих ефектів з поглиненою дозою стає неоднозначним і виникає необхідність враховувати ці флуктуації. Флуктуації тим значніше, чим менше об'єм, в якому оцінюється величина поглиненої дози, і чим більше величина ЛПЕ випромінювання, що формує цю дозу.

В випадку формування так званих "малих доз" опромінення (у мікродозиметричному розумінні даного терміну, яке не завжди збігається з його біологічним розумінням), кількість пронизуваних треками іонізуючого випромінювання чутливих мікрооб'ємів в опромінюваному об'єкті істотно менше їх загального числа. В цьому випадку спостережувана, в середньому, лінійна зміна ступені прояву того або іншого радіобіологічного ефекту від дози випромінювання пов'язана просто із зростанням числа чутливих мікрооб'ємів, що пронизуються треками випромінювання, а не з власне лінійним характером дозової залежності виходу цього ефекту.
Дозиметрія - розділ прикладної ядерної фізики, що розглядає іонізуюче випромінювання, фізичні величини, що характеризують поле випромінювання або взаємодію випромінювання з речовиною, а також принципи і методи визначення цих величин. Дозиметрія має справу з такими фізичними величинами іонізуючого випромінювання, які визначають його хімічну, фізичну і біологічну дію. Найважливіша властивість дозиметричних величин - встановлений зв'язок між фізичною величиною що вимірюється і очікуваним радіаційним ефектом.

47. Поділ ядер урану. Ланцюгова реакція.
По́діл ядра́
— ядерна реакція, при якій ядро важкого елементу розпадається на менші ядра, часто виділяючи при цьому гамма-кванти й вільні нейтрони.
Поділ ядра — екзотермічна реакція. Виділене при поділі тепло набагато перевищує характерні енергії хімічних реакцій. Тому поділ використовується в ядерній енергетиці, а також у військовій справі для створення атомних бомб.
Поділ слід відрізняти від реакцій радіоактивного розпаду, при яких виділяються гамма-кванти, альфа- і бета-частинки, а маса ядра та його атомний номер змінюються незначно, або зовсім не змінюються. При поділі первинне ядро розпадається на великі шматки і як наслідок виникають відносно важкі ядра із середини періодичної таблиці.
При поділі ядер виділяються нейтрони. Їхня кількість залежить від конкретного сценарію поділу. Зазвичай виділяються 2-3 нейтрони. Ці нейтрони можуть захопитися іншими, ще неподіленими ядрами, й викликати їхній поділ, при якому знову ж таки виділяються нові нейтрони. Така реакція називається ланцюговою. Ланцюгова реакція характеризується коефіцієнтом розмноженнянейтронів. Він залежить не тільки від кількості нейтронів, що виділяються при кожному акті поділу, а й від втрат нейтронів: частина нейтронів вилітає за межі області, де відбувається реакція і знаходяться здатні до поділу ядра, інша ж частина поглинається ядрами інших (стабільних)хімічних елементів і не викликає реакцій поділу. Якщо коефіцієнт розмноження більший за одиницю, виникає вибух. Такий сценарій використовується у атомних бомбах. Якщо коефіцієнт розмноження строго дорівнює одиниці, то реакція протікає стабільно. Такий сценарій використовується уядерних реакторах.
Ймовірність поглинання нейтрона ядром залежить від енергії нейтрона. Для 235U ймовірність збільшується при зменшенні швидкості нейтронів. Тому у ядерних реакторах використовуютьсясповільнювачі нейтронів. Оскільки найважливішими для реакції поділу є теплові нейтрони, то коефіцієнт розмноження нейтронів залежить від температури у ядерному реакторі. Для управління реакцією у реактор вводять (або виводять) речовини, здатні поглинати нейтрони, таким чином зменшуючи (або збільшуючи) їхній потік.

48. Проблеми розвитку ядерної енергетики України. Чорнобильська катастрофа та ліквідація її наслідків. Боротьба за ліквідацію загрози ядерної війни.
У грудні 1991 р. підприємства атомної енергетики були об'єднані у концерн "Укратоменергопром", який у січні 1993 було реорганізовано у Державний комітет України з використання ядерної енергії - Держкоматом України.

§ 21 жовтня 1993 р. Верховна Рада України скасувала дію мораторію. Було відновлено роботи на 6-му блоці Запорізької АЕС, 4-му блоці Рівненської та 2-му - Хмельницької АЕС. У жовтні 1995 р. відбувся енергетичний пуск 6-го блоку Запорізької АЕС. Запорізька атомна станція із встановленою потужністю 6 млн кВт стала найбільшою в Європі. 17 жовтня 1996 р. постановою Кабінету Міністрів №1268 було створено державне підприємство «Національна атомна енерго-генеруюча компанія "Енергоатом". Чорнобильська АЕС — перша українська атомна електростанція, експлуатацію якої припинено до закінчення проектного ресурсу. Нині три блоки станції з реакторами РБМК-1000 перебувають у стадії зняття з експлуатації, зокрема, 2-й енергоблок - з 1991 р. після пожежі у машинному залі, 1-й енергоблок - з 1996 р. за рішенням українського уряду, 3-й блок зупинено наприкінці 2000 р.

Постановою Уряду України від 25 квітня 2001 р. Чорнобильську АЕС виведено зі складу НАЕК "Енергоатом". Їй надано статус державного спеціалізованого підприємства. Для вирішення питань працевлаштування вивільненого персоналу Чорнобильської АЕС, а також з метою підвищення ефективності управління якістю та ефективністю ремонтних робіт, що проводяться на атомних електростанціях, у листопаді 2000 р. створено підприємство "Атомремонтсервіс", яке увійшло до складу Компанії.

§ З квітня 1999 р. уведено в промислову експлуатацію Олександрівську ГЕС з потужністю 2,5 МВт — частину Південноукраїнського енергетичного комплексу.

§ У 2003 р. планується добудувати Ташлицьку ГАЕС, готовність двох агрегатів якої оцінюється у 80 відсотків. На державному рівні здійснюються заходи з добудови двох енергоблоків на Рівненській та Хмельницькій АЕС, готовність яких - 85-90 відсотків.

§ У липні 2001 р. Запорізька АЕС отримала ліцензію на введення в дослідно-промислову експлуатацію перших трьох контейнерів сухого сховища відпрацьованого ядерного палива (ССВЯП). Нині проводиться робота з переведення сховища у промислову експлуатацію.

§ У липні 2002 р. Південно-Українська АЕС першою серед українських атомних електростанцій отримала ліцензію Держатомрегулювання на експлуатацію ядерних установок. Серпень - жовтень 2004 р. Завершення спорудження та енергетичний пуск другого Хмельницького та четвертого Рівненського енергоблоків. На сьогодні в експлуатації на АЕС перебуває 15 енергоблоків, з них 13 - з реакторами типу ВВЕР-1000, 2 - ВВЕР-440.




Поделиться с друзьями:


Дата добавления: 2015-05-24; Просмотров: 1014; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.026 сек.