Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Magnets




Cereal

Ice

Foam

Nuts

PHYSICS IN EVERYDAY LIFE

The most basic of the sciences, physics, is all around us every day. If you've ever wondered what makes lightning, why a boomerang returns, how ice skaters can spin so fast, how Michael Jordan can "fly," why waves crash on the beach, how that tiny computer can do complicated problems, or how long it takes light from a star to reach us, you have been thinking about some of the same things physicists study every day.

Physicists like to ask questions. They try to find answers for almost everything from when the universe began to why soda fizzes. If you like to explore and figure out why things are the way they are, you might like physics.

If you've had a back-row seat at a rock concert, and could still hear, you experienced physics at work! Physicists studying sound contribute to the design of concert halls and the amplification equipment. Knowing more about how things move and interact can be used to manage the flow of traffic and help cities avoid grid lock.

Lasers and radioactive elements are tools in the war on cancer and other diseases. Geophysicists are developing methods to give advance warning of earthquakes. The work of physicists made possible the computer chips that are in your digital watch, CD player, electronic games, and hand-held calculator.

Physicists have figured out some extremely fine details of the universe, from the radius of black holes to the behavior of subatomic particles neither of which we can even see. It may surprise you to learn, then, that they lack explanations (or have only recently stumbled upon them) for many common phenomena we observe in daily life.

Perhaps you've noticed that, in bowls of mixed nuts, the Brazil nuts always seem to be sitting on top. This is known as the "Brazil nut effect," and the seemingly mundane phenomenon is actually one of the biggest unsolved mysteries in many-body physics the science that describes large quantities of interacting objects.

Among an assortment of things (whether they be nuts, sedimentary deposits, or other objects of varying sizes), larger pieces rise to the top over time in spite of their greater gravitas, while smaller objects tend to sink lower in the pile over time. Perhaps the small stuff is trickling through cracks. Convection currents may also play a role, as might condensation of smaller particles. All of these possibilities and a few more probably contribute to the Brazil nut effect, but no one knows which ones, or to what extent, so no successful computer simulations of the phenomenon have been made.

Not only nut manufacturers, but also physicists, astronomers and geologists would all benefit from an understanding of the effect, so next time you're eating nuts or granola, or fishing the crumbs out of the bottom of a bowl of Doritos, try contemplating the physics involved.

Had a bubble bath today? Maybe not but you've probably shaved, washed dishes, had a latte or beer, or, if you're lucky, eaten a piece of pie topped with a puff of whipped cream.

We encounter foam so often that few of us step back and fully appreciate how weird the stuff really is. For starters, consider this: Is whipped cream a solid, a liquid, or a gas?

According to Douglas Durian, a professor of physics at UCLA, foams are typically 95 percent gas and 5 percent liquid. Somehow these add up to give them certain traits of solids, too. The gas in the foam separates the liquid to form a matrix of tiny bubbles, and if the bubbles' liquid walls are rigid enough, the foam can sometimes keep its shape.

However, no formula exists for predicting exactly how stiff or oozy a foam will be based on the size of its bubbles or the amount of liquid it contains. "The physics of foam is poorly understood," Durian told NASA Science.

A century and a half of scientific inquiry has yet to determine why ice can make you fall down. Scientists agree that a thin layer of liquid water on top of solid ice causes its slipperiness, and that a fluid's mobility makes it difficult to walk on, even if the layer is thin. But there's no consensus as to why ice, unlike most other solids, has such a layer.

Theorists have speculated that it may be the very act of slipping making contact with the ice that melts its surface. Others think the fluid layer is there before the slipper ever arrived, and is somehow generated by the inherent motion of surface molecules.

We know you're looking for someone or something to blame, as you lie there on the ground fuming, but unfortunately the jury is still out on this one.

You may or may not have pondered why your breakfast cereal tends to clump together or cling to the sides of a bowl of milk. Dubbed the Cheerios Effect by scientists, this clumping phenomenon applies to anything that floats, including fizzy soda bubbles and hair particles in water after a morning shave.

Dominic Vella, a graduate student now at Cambridge University, and Lakshminarayanan Mahadevan, a mathematician from Harvard University, were the first to explain the effect in terms of simple physics, which they did in a 2005 paper. The Cheerios Effect, they proved, results from the geometry of a liquid's surface.

Surface tension makes the milk's surface cave in slightly in the middle of the bowl. Because water molecules in the milk are attracted to glass, the milk's surface curves upward around the bowl's edge. For this reason, pieces of the cereal near the edge float upward along this curve, appearing as if they're clinging to the edge.

Also because of surface tension, cereal floating in the middle of your bowl dents the milk's surface, creating a dip in it. When two pieces of cereal touch, their two dents become one, and, resting in it, they stick together.

Magnets: pretty weird, huh? What's up with them?

Jearl Walker, a physics professor at Cleveland State University and coauthor of the widely used textbook "Fundamentals of Physics" (Wiley, 8th Edition 2007), explains that magnetic fields naturally radiate outward from the electrically charged particles that make up atoms especially electrons.

Normally in matter, the magnetic fields of electrons point in different directions, canceling each other out. (This is why the electrons in your body don't cause you to stick to your fridge when you walk by it.) But when the magnetic fields all the electrons in an object align in the same direction, as occurs in many metals (and, obviously, in magnets), a net magnetic field is generated. This exerts a force on other magnetic objects, either attracting or repelling them depending on the direction of their own magnetic fields.

Unfortunately, trying to understand magnetism on a deeper level is essentially impossible. Though physicists have come up with a theory called "quantum mechanics" that very accurately explains the behavior of particles including their magnetism there's no way to intuitively understand what the theory really means.

Physicists wonder: why do particles radiate magnetic fields, what are magnetic fields, and why do they always align between two directions, giving magnets their north and south poles? "We just observe that when you make a charged particle move, it creates a magnetic field and two poles. We don't really know why. It's just a feature of the universe, and the mathematical explanations are just attempts of getting through the 'homework assignment' of nature and getting the answers," Walker told Life's Little Mysteries.




Поделиться с друзьями:


Дата добавления: 2015-05-24; Просмотров: 835; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.027 сек.