Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Овладение многофакторным экспериментированием со сложными системами как направление познавательного развития 1 страница




 

В предшествующих разделах мы показали, какие требования к организации исследовательского поведения в условиях высокой новизны, сложности, неопределенности вытекают из теории сложных динамических систем. Возникают вопросы, в какой мере ИП реальных людей соответствует этим принципам и как происходит овладение этими принципами с возрастом.

Мы рассмотрим эти вопросы на материале многофакторного экспериментирования, поскольку именно оно считается основным методом исследования сложных динамических систем [Мельников, 1983; Пятницын, Вовк, 1987]. Вначале мы кратко изложим некоторые положения научной методологии многофакторного эксперимента. Эта методология считается эталоном для сравнения с исследовательской, экспериментаторской деятельностью реальных испытуемых. Затем мы обратимся к собственно психологическим исследованиям того, как люди экспериментируют с различными сложными системами.

 

Методология многофакторного экспериментирования

Напомним основной принцип исследования сложных систем: чем более разнообразны экспериментальные воздействия, тем полнее и многостороннее познание изучаемой системы. Разнообразить воздействия можно двумя путями.

Во-первых, можно использовать или изобретать ранее не применявшиеся методы воздействий. Это совершенно новые воздействия, не сводящиеся к комбинациям уже опробованных. (Например, если объект еще не испытывали в рентгеновских лучах или в невесомости, можно сделать это.)

Второй путь – это комбинирование воздействий в различных сочетаниях. Как показано в теории систем и теории эксперимента, комбинирование – это важнейшее универсальное направление развертывания разнообразия экспериментальных воздействий. Всегда, когда мы знаем хотя бы о двух и более способах воздействий, мы можем начать объединять их в различные сочетания по правилам комбинаторики. При этом хотя и не изобретаются принципиально новые способы воздействий, но приобретается принципиально новая и важная информация – информация о взаимодействии факторов, о внутренних связях в системе. На этом основано многофакторное экспериментирование.

Многофакторное экспериментирование позволяет изучать такое принципиальное свойство систем как эмергентность – несводимость свойств системы к сумме свойств ее отдельных элементов (неаддитивность, несуммативность).

Простейшей физической метафорой неаддитивности (или несуммативности), проявляющейся в эксперименте, является взвешивание нескольких объектов [Пятницын, Вовк, 1987]. Пусть имеется 3 объекта: А, Б, С. Когда мы взвешиваем их по отдельности, то обнаруживаем, например, что объект А весит 2 г, Б весит 5 г, а С весит 10 г. Но когда мы взвешиваем два объекта А и Б, то получаем не 7 (2+5), а, например, 25 г. Когда взвешиваем А и С, то получаем не 12 (2+10), а 1 г. Когда взвешиваем Б и С, то получаем не 15, а 3 г. Объяснение такого рода фактов состоит в том, что взвешиваемые объекты вступают друг с другом и с окружающим в различные взаимодействия (например, химические или же какие-либо другие). Взвесив все три объекта вместе, мы можем получить и отрицательный вес (-120 г): чашку весов начинает тянуть вверх. (Если А, Б, С – это, предположим, три блока самособирающегося вертолета.)

В то же время возможности межфакторных взаимодействий не абсолютны. В соответствии с аргументацией правдоподобия эффекты действия переменных, взятых по одной, считаются более вероятными, чем эффекты взаимодействия между двумя переменными, а эффекты взаимодействия двух переменных считаются более вероятными, чем эффекты взаимодействия трех, и т.д. Иначе говоря, главный эффект более вероятен, чем эффект взаимодействия [Кемпбелл, 1996]. Если бы эффекты взаимодействия высших порядков были так же значимы и вероятны, как и эффекты взаимодействий предшествующих порядков, то какие либо обобщения и предсказания стали бы невозможны – каждый следующий фактор совершенно менял бы всю картину, вступая в новые, совершенно непредсказуемые взаимодействия с ранее действовавшими факторами. Это бы сделало невозможным существование науки. Обобщения возможны, потому что множеством потенциально определяющих факторов все-таки можно пренебречь – в этом состоит постулат конечной каузальной связи (Б.Дж.Андервуд, цит. по [Кемпбелл, 1996, с. 113]).

Но конечность причинной связи – это постулат, а не аксиома, и не доказанная теорема. Остается открытым вопрос о том, как этот постулат конечной связи соотносится с фундаментальным философским понятием всеобщей связи, являющейся результатом и проявлением универсального взаимодействия всех предметов и явлений между собой.

Очевидно, что лучше всего этот постулат работает при анализе закрытых устойчивых моносистем. В пределе, в закрытой и устойчивой системе цепочки причинных связей минимальны, если вообще имеются – система застыла, "замерзла". При анализе же открытых, динамически изменяющихся комплексных систем приходится считаться с тем, что список потенциально значимых факторов, которые могут вступать в действие при тех или иных ситуациях, как раз не конечен, а "существенно бесконечен", неопределенно велик [Дрейфус, 1978, с. 226]. Как бы ни был велик конечный список учитываемых факторов, всегда найдется ситуация, в которой проявится фактор, либо считавшийся крайне маловероятным, либо вообще неучтенный, но рассмотрение которого окажется делом жизни и смерти. А значит, список учитываемых факторов придется увеличить, и т.д.

Итак, вопрос конечности – бесконечности (неопределенности длины) списка учитываемых факторов и вопрос порядка учитываемых взаимодействий остается открытым, упираясь в конечном счете в фундаментальные вопросы философии. Практическая рекомендация может состоять в том, чтобы при анализе системы, которую исследователь считает закрытой и устойчивой, попытаться свести ее описание к конечному и небольшому числу строго определенных факторов с низкими порядками взаимодействий (сделать описание простым – адекватным строению самой системы). Тогда все станет надежно и предсказуемо.

Но затея ограничиться строго определенным набором факторов и наперед заданным порядком их взаимодействий может оказаться крайне опасной при анализе открытых неустойчивых динамических систем. В случае такого ограничения придется постоянно сталкиваться с важными, но неучтенными обстоятельствами и с их "невероятными стечениями", одно из которых рано или поздно может оказаться роковым.

С другой стороны, в этих системах существует совершенно реальная опасность потерять способность к анализу ситуации и принятию решений, будучи погребенными под информацией неопределенно большого объема и сложности – если никаких ограничений на число рассматриваемых факторов и взаимодействия вообще не накладывать. Эта проблема не имеет универсального решения и решается в зависимости от компетентности и искусства исследователя.

В идеале, по теории планирования эксперимента, многофакторный эксперимент должен быть полным. В таком эксперименте каждый уровень каждого фактора комбинируется с каждым уровнем всех остальных факторов. Только полный факторный эксперимент дает эмпирическую информацию обо всех взаимодействиях между изучаемыми переменными. Однако при линейном росте числа исходных факторов происходит лавинообразный рост числа их возможных комбинаций (так называемый "комбинаторный взрыв"). Например, для N факторов, каждый из которых имеет 2 уровня, число комбинаций составляет 2 в степени N. Отсюда следует, что для изучения комбинаций 4 факторов надо провести 16 экспериментов, а для 10 факторов – уже 1024 эксперимента.

Этот факт лавинообразного роста числа факторных комбинаций приводит к тому, что становится невозможно проверить все взаимодействия практически, экспериментально. Решить эту проблему призван неполный, или дробный факторный эксперимент, в котором число факторных комбинаций меньше максимально возможного. Он осуществим, если априори (до опыта) известно, что эффектами некоторых факторных взаимодействий можно пренебречь или что некоторые из них отсутствуют. При планировании дробных факторных экспериментов применяются специальные процедуры построения отдельных реплик полного экспериментального плана [Асатурян, 1983]. Основная проблема здесь – извлечение максимума информации из минимума экспериментов. Вначале рекомендуется ограничиться анализом поведения системы лишь на множестве тех воздействий и реакций, которые исследователь считает существенными. При этом формализованных способов выделения существенного нет. Продолжать испытания рекомендуется до тех пор, пока на каждую новую комбинацию воздействий система реагирует непрогнозируемым образом [Мельников, 1983]. В дальнейшем мы покажем, как эти рекомендации открывают для себя дети.

Методология многофакторного экспериментирования отличается от методологии однофакторного экспериментирования следующим [Пятницын, Вовк, 1987].

В основе однофакторного экспериментирования лежат классические индуктивные методы установления причинных связей Бекона – Милля: метод сходства, различия, объединенный метод сходства и различия, метод сопутствующих изменений, остатков. (Мы не будем повторять здесь формулировки этих методов – читатель может найти их в любом учебнике по логике.) Все эти методы построены на постулате о возможности выделения каждой причины (фактора) в "чистом" виде и их изменения по одному. (Это вовсе не значит, что классическое однофакторное экспериментальное исследование изучало только какой-то один фактор. Во многих исследованиях экспериментаторы изучали большое число факторов, но все эти факторы представлялись как такие, которые можно выделять и изменять по одному.)

Помимо этого, методология однофакторного экспериментирования основана на следующих менее очевидных положениях: а) измерительный инструмент не включается в теорию объекта; б) постулируется константность этого измерительного инструмента (предполагается, что знание "материализуется" в исследовательском инструменте строго однозначным образом, а действие этого инструмента в разных экспериментальных ситуациях остается постоянным).

Методология многофакторного экспериментирования, в отличие от однофакторного, базируется на других предпосылках [Пятницын, Вовк, 1987]:

1. Невозможность выделения каждого свойства или фактора в "чистом" виде, невозможность разделения факторов и их изменения по одному. В сложных системах за счет множественных внутренних взаимодействий изменение одного фактора влечет за собой изменения других факторов – по сетям и кольцам причинно-следственных связей. Пытаясь изменить один фактор, экспериментатор "сдвигает" всю систему. При этом через обратные связи может существенно измениться и тот фактор, которым экспериментатор, казалось бы, строго управляет. Поэтому приходится сравнивать ситуации, отличающиеся не по одному, а сразу по множеству параметров, и классические методы установления причинных связей теряют эффективность.

2. Исследовательский инструмент включается в теорию объекта. Выявляемые свойства объекта рассматриваются не просто как его собственные свойства, а как результат взаимодействия изучаемого объекта с другими объектами, в том числе с исследовательским инструментом. Это верно и в естественных, и в гуманитарных науках. Когда экспериментатор измеряет градусником температуру воды в стакане, то на самом деле он меряет температуру как минимум системы "вода – градусник".

В психологии инструмент вообще очень сильно влияет на результаты. Использование того или иного исследовательского инструмента может привести к появлению факта, процесса или явления, до этого не существовавшего (к появлению артефакта – искусственно созданного и в ряде случаев трудно объяснимого факта). При опросе может быть задан какой-то вопрос, на который опрашиваемый даст ответ. На основании этого ответа будет сделан вывод о том, что этот человек думает или чувствует по определенному поводу. На самом деле он мог никогда до этого не задумываться над этим вопросом и не иметь никакого мнения или ответа. Для него действительность, о которой его спросили, до вопроса вообще не существовала.

4. Овеществление знаний в экспериментальном инструменте не является жестко однозначным. Инструмент представляет собой многофункциональную систему.

5. Результаты эксперимента представляются не одной, а множеством моделей [Пятницын, Вовк, 1987].

 

Психологическое изучение экспериментирования

Единого строгого психологического определения экспериментирования нет. Обычно под ним понимается исследование объекта или ситуации путем контроля и управления условиями (переменными, факторами). Поскольку сами переменные, их сложность, количество, а также уровень их контроля могут варьировать в очень широком диапазоне, то это понимание охватывает и исследовательскую манипулятивную деятельность маленького ребенка, и деятельность коллектива ученых.

С нашей точки зрения, одни из самых масштабных исследований экспериментирования на взрослых проведены в немецкой психологии: Д.Дернером, П.А.Френшем, Дж.Функе и др. (см. [Функе, Френш, 1995; Dorner, 1993; Frensch, Funke, 1995; Sternberg, Funke, 1991]). Эти авторы изучали деятельность нескольких тысяч испытуемых с разнообразными специально разработанными компьютерными сценариями. Особенностью этих сценариев является большое количество факторов, связанных динамически изменяющимися и неочевидными, "непрозрачными" связями (например, в модели управления городом). В этих исследованиях психологи изучают взаимосвязи мотивационных, эмоциональных и когнитивных переменных, строят иерархические модели управления намерениями, целями, сбором информации, выдвижением гипотез, принятием решений, самоконтролем и т.д. Для знакомства с этим чрезвычайно интересным направлением мы рекомендуем читателю переведенную на русский язык книгу Д.Дернера "Логика неудачи: стратегическое мышление в сложных ситуациях" [1997]. В отечественной психологии крупный вклад в изучение профессиональной деятельности со сложными системами внесли В.Н.Пушкин [1965], З.А.Решетова [1985], И.Б.Новик [1986] и др.

Мы же здесь более подробно остановимся на проблемах возрастного развития способностей к решению исследовательских задач и на возможностях детей в отношении исследования системных объектов.

Для анализа способностей к решению комплексных исследовательских задач важнейшее значение имеет введенное А.Деметроу понятие "причинно-экспериментального мышления" (causal-experimental thought). Это мышление, направленное на выявление причинных связей посредством экспериментирования [Demetriou et al., 1993(а, б)]. По классификации А.Деметроу, экспериментальное мышление является одной из пяти основных специализированных структурных систем познавательной деятельности человека. Его функцией является выявление причинных связей во взаимодействующих структурах. В состав экспериментального мышления входят следующие компоненты.

1) Комбинаторные способности. Они являются, по А.Деметроу, "краеугольным камнем" данной специализированной системы и необходимы для исчерпывающего поиска всех возможных взаимодействий между переменными.

2) Способности по формированию гипотез о возможных причинных отношениях. Главную роль здесь играют гипотезы о взаимодействиях внутри различных сочетаний факторов. Р.Готтсданкер [1982] называет такие гипотезы комплексными, или комбинированными.

3) Способности строить планы многофакторных экспериментов, направленных на проверку выдвинутых гипотез.

4) Способности конструирования объяснительных моделей.

Что касается комбинаторных способностей, то они в большинстве случаев оцениваются на материале "чистой" комбинаторики, не "отягощенной" факторными взаимодействиями между комбинируемыми элементами. Например, испытуемому дается задание перечислить все сочетания нескольких элементов (перечислить все цепочки, которые можно сделать, беря по одной бусине красного, желтого, зеленого и синего цветов). Бусины, естественно, никак не реагируют на то или иное соседство, то есть между ними нет взаимодействия. Отсутствие взаимодействий неважно с точки зрения "чистой" комбинаторики, но важно с точки зрения многофакторного экспериментирования, которое теряет всякий смысл, если взаимодействий между факторами нет.

Начиная с Ж.Пиаже, считается, что к полному комбинаторному перебору способны лишь взрослые и подростки. Наиболее эффективной стратегией полного перебора является "счетчик-стратегия", названная так за сходство с работой автоматических счетчиков [Scardamalia, 1977]. Она состоит в последовательном полном переборе всех значений одного элемента (младшего разряда) при сохранении постоянными значений других элементов. Затем второй элемент принимает следующее значение, после чего повторяется цикл перебора значений младшего элемента и т.д., пока все элементы не пройдут все свои значения. Данные Ж.Пиаже о возрастной динамике овладения комбинаторикой существенно пересмотрела Л.Д.Инглиш. Она выделила и проанализировала различные комбинаторные стратегии детей и лежащие в основе этих стратегий принципы. Л.Д.Инглиш показала, что при правильно подобранном предметном материале дети с 7 лет начинают использовать счетчик-стратегию для перебора комбинаций 2-3 типов элементов. Например, испытуемые перебирали все комбинации цветных маек и штанишек, одевая игрушечных медведей [English, 1993; English, Halford, 1995].

С.Пейперт [1989] выдвинул гипотезу, что в компьютерных культурах в ходе овладения комбинаторными микромирами (например, разработанной им средой LOGO) дети значительно раньше, чем в подростковом возрасте, будут осваивать схему процедур, известную в программировании под названием "вложенные циклы" ("цикл в цикле"). На основе этой схемы легко строится алгоритм полного комбинаторного перебора, то есть счетчик-стратегия.

Если же говорить не только о комбинаторике, но и о других структурных компонентах экспериментального мышления (выдвижении комплексных гипотез, организации необходимых многофакторных взаимодействий, осмыслении полученной информации), то, по данным Ж.Пиаже и множества других исследователей, к этому способны лишь подростки и взрослые, но не младшие школьники и – тем более – не дошкольники [Ришар, 1998; Флейвелл, 1967; Flavell et al., 1993; Demetriou et al., 1993(а, б); Klahr et al., 1993; Schauble, 1990; Schauble, Glaser, 1990]. Даже дети, находящиеся на стадии конкретных операций (7-11 лет), не могут на удовлетворительном уровне ни выделять и комбинировать переменные, контролируя каждую из них, ни формулировать комбинированные (комплексные) гипотезы, ни проверять их, используя индуктивные методы установления причинно-следственных связей. При специальном обучении возможно формирование обобщенного приема уравнивания переменных у четвероклассников [Балдина, 1987]. Стратегия уравнивания переменных считается принципиально важной для экспериментирования: она состоит в варьировании одного фактора при сохранении всех остальных факторов неизменными. (Фактически речь идет о стратегии однофакторного экспериментирования с простыми системами, поскольку при экспериментировании со сложными системами невозможно найти ситуации, различающиеся только одним фактором, о чем было сказано выше.)

Считается, что дошкольники могут исследовать и понимать ситуации только простейшего факторного взаимодействия, а именно, непосредственно наблюдаемого взаимодействия не более чем двух факторов, каждый из которых имеет не более 2 уровней [Demetriou et al., 1993(а, б)]. В качестве примеров таких ситуаций можно привести следующие эксперименты. В исследовании С.Л.Новоселовой [1978] ребенок должен был подтянуть к себе предмет, ухватившись одновременно за оба конца тесемки, перекинутой через крючок на этом предмете. Если он тянул только за один конец, то второй выскальзывал из крючка. В исследовании Т.М.Землянухиной [1986] от дошкольника требовалось открыть "проблемную коробку", нажав на кнопку ее запора и одновременно потянув крышку, то есть организовав простейшую комбинацию двух факторов. Оказалось, что эти задачи доступны детям уже в раннем возрасте. Кроме того, детей 6-7 лет можно научить анализировать поведение трехфакторной механической системы (тележки и груза на наклонной плоскости) – если взрослый выделяет для ребенка в обобщенном виде существенные связи в этой системе [Бильчугов, 1979]. (Комбинирования факторов от испытуемых не требовалось.)

В проводимых нами с середины 80-х г. экспериментах более 600 детей 3-7 лет самостоятельно обследовали различные специально разработанные проблемные игрушки, содержащие многофакторные зависимости. Такие многофакторные объекты являются сложными с точки зрения наличия в них большого числа связей и взаимодействий между элементами. Эти объекты требуют комплексных (комбинированных, одновременных) воздействий на органы управления, что вызывает реакции игрушки, значительно отличающиеся от ее реакций на одиночные воздействия.

В методическом плане большинство наших констатирующих и контрольных экспериментов строилось по комбинированной схеме. Первая часть эксперимента соответствовала классической схеме изучения ИП: ребенку предлагался новый объект, который он самостоятельно обследовал при минимально необходимом вмешательстве взрослого. Во второй части испытуемому предлагалось выполнить ряд заданий, выявляющих уровень овладения объектом.

Большинство испытуемых в ходе самостоятельного обследования оказалось способно осуществлять неполный, но достаточно эффективный комбинаторный перебор нескольких факторов (в некоторых случаях – до шести факторов) и понимать многофакторные механические, математические и логические зависимости, заложенные в объекте [Поддьяков А.Н., 1990, 1991(а), 1991(б); Poddiakov A.N., 1994]. Иначе говоря, нам удалось выявить принципиально новое психологическое явление – достаточно неожиданную способность дошкольников к решению комплексных, многофакторных задач.

Мы назвали такую деятельность детей комбинаторным экспериментированием, понимая под этим термином построение комплексных, комбинированных воздействий на объект с целью выявления его системообразующих связей на основе анализа информации о взаимодействии факторов. Мы рассматриваем комбинаторное экспериментирование детей как своеобразный аналог многофакторного экспериментирования взрослых. Мы считаем, что комбинаторное экспериментирование дошкольников – это особое, чрезвычайно важное направление познавательного развития детей. Оно служит одной из основных предпосылок становления у детей начальных форм системного подхода к изучению сложных явлений и тем самым вносит существенный вклад в их познавательное развитие.

Данное направление фактически не изучалось и не учитывалось в общей схеме познавательного развития, поскольку не было инструментария для его обнаружения и исследования. Наша методология изучения исследовательского поведения позволила нам разработать принципы создания такого инструментария, о чем будет сказано ниже.

В свете ранее изложенных литературных данных, полученных множеством различных авторов и свидетельствующих о практически полной неспособности дошкольников к комбинаторному экспериментированию, выявленный нами систематический успех детей при обследовании некоторых классов многофакторных объектов требует специального анализа особенностей их экспериментального мышления, причин и условий их достижений.

Мы исходим из того, что экспериментирование дошкольника со сложным объектом представляет собой целостную творческую исследовательскую деятельность в условиях неопределенности, имеющую свои основания и достаточно эффективные стратегии. (Экспериментирование взрослых или подростков тоже во многих случаях является сложной творческой деятельностью, но опирается при этом на обобщенные формально-операциональные стратегии, которых нет у дошкольников.)

В данной работе анализируются три причины успешного экспериментирования дошкольников, которые мы относим к основным: 1) наличие у детей знаний и представлений разного уровня о системах взаимодействий; 2) тенденция дошкольников к использованию комплексных, комбинированных манипуляций и организации их в стратегии комбинаторного перебора; 3) особенности познавательной мотивации и целеобразования у детей при обследовании многофакторных объектов.

К важнейшим условиям успешного экспериментирования мы относим: 1) особенности предлагаемых объектов; 2) организацию деятельности детей (индивидуальная или совместная деятельность).

Начнем с причин.

1. У дошкольников имеются знания и представления разного уровня о системах взаимодействий. Н.Андерсон с сотрудниками показал, что уже с 5 лет дети способны учитывать взаимодействие двух факторов, оцениваемых по непрерывной линейной шкале (например, оценивать площадь прямоугольника по его длине и ширине) [Anderson, 1991]. (Комбинирования факторов от испытуемых не требовалось.)

Однако дети, несомненно, имеют и более разнообразные представления о системах взаимодействий. Во-первых, они имеют представления о системах конкретных физических и социальных взаимодействий и соответствующие конкретные декларативные и процедурные знания. Эти знания отражены во множестве понятий ("взять", "толкнуть", "стукнуть", "попросить", "обидеть", "подраться" и т.д.). Весь окружающий мир – и физический, и социальный – построен на взаимодействиях, и ребенок не может ориентироваться в нем, не понимая их в той или иной мере.

Помимо этого, дошкольники имеют и общие, универсальные знания и представления о взаимодействии, отраженные в понятиях "способствовать" ("помогать"), "препятствовать" ("мешать"), "прекратить" (остановить") и т.д. Наличие у детей и универсальных, и конкретных знаний позволяет им лучше понимать системы конкретных предметных взаимодействий и переносить это понимание на системы различной степени сходства и обобщенности, расширяя и совершенствуя тем самым систему исходных знаний. Например, в одном из наших обучающих экспериментов использовалась игрушка, в которой высота подъема заслонки и, соответственно, размер открывающейся части изображения, зависели от числа одновременно нажатых кнопок. При нажиме какой-либо одной кнопки заслонка поднималась на 1/3, любых двух кнопок – на 2/3, всех трех кнопок – на максимальную высоту (рис. 1). Экспериментатор объяснял испытуемым 5 лет, что кнопки "помогают" друг другу поднять заслонку: она тяжелая, и у одной кнопки не хватает сил поднять ее высоко. У двух кнопок сил побольше, а у трех совсем много. Это метафорическое понятие "взаимопомощи" кнопок принималось всеми испытуемыми, после чего они использовали его при последующем самостоятельном обследовании новых объектов сходного типа.


 

     
Рис. 1. «Счетная» головоломка. Высота подъема заслонки зависит от числа нажатых кнопок и не зависит от того, какие именно кнопки нажаты. При нажиме любых n кнопок заслонка поднимается на n/3 высоты окна, открывая соответствующую часть картинки    

 

 

Другим примером переноса детьми знаний об одних системах взаимодействий на другие служит эксперимент с игрушкой, предназначенной для транспортировки шаров из исходного пункта в конечные с помощью ряда механизмов (рукояток, толкателей, тележек с запорами и пр.) (рис. 2). Дети самостоятельно переносили добытые ими декларативные и процедурные знания об особенностях этих устройств и о способах действий с ними на симметричные ситуации взаимодействия (с левосторонней на правостороннюю), на ситуации, включающие новые элементы (с ситуации "сброс шара с подставки" на ситуацию "сброс шара в тележку"), и т.д. [Поддьяков А.Н., 1991(а)].


 

Рис. 2. Механическая установка. Предоставляет ребенку возможность организовывать и наблюдать различные системы механических взаимодействий на рабочем поле путем комбинированных воздействий на органы управления.  

 

2. Дошкольники имеют выраженную тенденцию осуществлять комбинированные манипуляции с объектом. Целенаправленное комбинаторное манипулирование орудиями используется уже обезьянами [Westergaard, 1992, 1993; Westergaard, Suomi, 1994]. Способности детей к комбинированным манипуляциям проявляются примерно в 1,5 года [Fenson, Ramsay, 1991] и являются условием успешного решения задач на конструирование в 4-5 лет [Cheyne, Rubin, 1983].

Подчеркнем, что комбинированные манипуляции с объектом, в котором взаимодействий при этом не происходит, не дают новой существенной информации. Их истинный потенциал раскрывается при встрече ребенка с многофакторным объектом, содержащим возможность организации взаимодействий. Причиной комбинирования действий здесь является не тенденция к разнообразию манипуляций ради них самих (манипулятивный драйв), а осмысленное желание ребенка организовать взаимодействие заинтересовавших его объектов или их элементов. Поэтому переход к комбинаторному экспериментированию происходит значительно легче в случае, когда возможность взаимодействий очевидна (например, в открытой для наблюдения механической системе), чем в случае, когда такая возможность скрыта (объект – "черный ящик"). В первом случае дошкольники используют не только комбинаторику непосредственных мануальных воздействий на объект, но и комбинаторику "второго порядка" – комбинаторику наблюдаемых внутренних взаимодействий в системе [Поддьяков А.Н., 1991(а)].




Поделиться с друзьями:


Дата добавления: 2015-05-08; Просмотров: 506; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.045 сек.