Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Направления научных исследований в солнечной энергетики




Основные технико-экономические показатели

Использование солнечной энергии может быть полезно в нескольких отношениях.

Во-первых, при замене ею ископаемого топлива уменьшается загрязнение воздуха и воды.

Во-вторых, замена ископаемого топлива означает сокращение импорта топлива, особенно нефти.

В-третьих, заменяя атомное топливо, мы снижаем угрозу распространения атомного оружия. Наконец, солнечные источники могут обеспечить нам некоторую защиту, уменьшая нашу зависимость от бесперебойного снабжения топливом. Солнечные установки практически не требуют эксплуатационных расходов, не нуждаются в ремонте и требуют затрат лишь на их сооружение и поддержание в чистоте. Главное препят­ствие на пути их широкого распространения — высокая себестоимость электроэнергии: она в 6—8 раз выше, чем на ТЭС. Но с применением более простых по конструкции, а значит, и бо­лее дешевых гелиостатов себестоимость электроэнергии, вырабатываемой СЭС, дол­жна существенно снизиться.

Работать они могут бесконечно. Ученые считают, что мощные солнечные электростанции по своей экономичности смогут стать в один ряд с современными тепловыми и атомными электростанциями.

К недостаткам всех перечисленных установок преобразования солнечной энергии относится то, что для них нужны большие площади, причем относительно недалеко (в пределах 80 км) от потребителя. Иначе потери при передаче электроэнергии будут недопустимо высоки. Правда, со временем могут появиться сверхпроводящие линии электропередач, которые решат проблему, однако в ближайшем будущем строительство СЭС ограничивается недостатком вблизи крупных городов достаточно обширных свободных территорий. С другой стороны, солнечные батареи можно размещать на крышах зданий. [4]

1. Фундаментальные исследования

" Из-за теоретических ограничений в преобразовании спектра в полезную энергию (около 30 %) для фотоэлементов первого и второго поколения требуется использование больших площадей земли под электростанции. Например, для электростанции мощностью 1 гвт это может быть несколько десятков квадратных километров (для сравнения, - гидроэнергетика, при таких же мощностях, выводит из пользования заметно большие участки земли), но строительство солнечных электростанций такой мощности может привести к изменению микроклимата в прилегающей местности и поэтому в основном устанавливаются фотоэлектрические станции мощностью 1 - 2 мвт недалеко от потребителя или даже индивидуальные и мобильные установки. Фотоэлектрические элементы на крупных солнечных электростанциях устанавливаются на высоте 1,8-2,5 метра, что позволяет использовать земли под электростанцией для сельскохозяйственных нужд, например, для выпаса скота. Проблема нахождения больших площадей земли под солнечные электростанции решается в случае применения солнечных аэростатных электростанций, пригодных как для наземного, так и для морского и для высотного базирования.

" Поток солнечной энергии, падающий на установленный под оптимальным углом фотоэлемент, зависит от широты, сезона и климата и может различаться в два раза для заселённой части суши (до трёх с учётом пустыни сахары). Атмосферные явления (облака, туман, пыль и др.) Не только изменяют спектр и интенсивность падающего на поверхность земли солнечного излучения, но и изменяют соотношение между прямым и рассеянным излучениями, что оказывает значительное влияние на некоторые типы солнечных электростанций, например, с концентраторами или на элементах широкого спектра преобразования.

2. Прикладные исследования

" Фотоэлектрические преобразователи работают днём и с меньшей эффективностью работают в утренних и вечерних сумерках. При этом пик электропотребления приходится именно на вечерние часы. Кроме того, производимая ими электроэнергия может резко и неожиданно колебаться из-за смены погоды. Для преодоления этих недостатков на солнечных электростанциях используются эффективные электрические аккумуляторы (на сегодняшний день это не достаточно решённая проблема), либо преобразуют в другие виды энергии, например, строят гидроаккумулирующие станции, которые занимают большую территорию, или концепцию водородной энергетики, которая на сегодняшний день пока недостаточно экономически эффективна. На сегодняшний день эта проблема просто решается созданием единых энергетических систем, которые перераспределяют вырабатываемую и потребляемую мощность. Проблема некоторой зависимости мощности солнечной электростанции от времени суток и погодных условий решается также с помощью солнечных аэростатных электростанций.

" На сегодняшний день сравнительно высокая цена солнечных фотоэлементов. С развитием технологии и ростом цен на ископаемые энергоносители этот недостаток преодолевается. В 1990-2005 гг. Цены на фотоэлементы снижались в среднем на 4 % в год.

" Поверхность фотопанелей и зеркал (для тепломашинных эс) нужно очищать от пыли и других загрязнений. В случае крупных фотоэлектрических станций, при их площади в несколько квадратных километров это может вызвать затруднения.

" Эффективность фотоэлектрических элементов падает при их нагреве (в основном это касается систем с концентраторами), поэтому возникает необходимость в установке систем охлаждения, обычно водяных. Также в фотоэлектрических преобразователях третьего и четвёртого поколений используют для охлаждения преобразование теплового излучения в излучение наиболее согласованное с поглощающим материалом фотоэлектрического элемента (так называемое up-conversion), что одновременно повышает кпд.

" Через 30 лет эксплуатации эффективность фотоэлектрических элементов начинает снижаться. Отработавшие своё фотоэлементы, хотя и незначительная их часть, в основном специального назначения, содержат компонент (кадмий), который недопустимо выбрасывать на свалку. Нужно дополнительное расширение индустрии по их утилизации.

3. Экологические проблемы

" При производстве фотоэлементов уровень загрязнений не превышает допустимого уровня для предприятий микроэлектронной промышленности. Современные фотоэлементы имеют срок службы (30-50 лет). Применение кадмия, связанного в соединениях, при производстве некоторых типов фотоэлементов, с целью повышения эффективности преобразования, ставит сложный вопрос их утилизации, который тоже не имеет пока приемлемого с экологической точки зрения решения, хотя такие элементы имеют незначительное распространение и соединениям кадмия при современном производстве уже найдена достойная замена.

В последнее время активно развивается производство тонкоплёночных фотоэлементов, в составе которых содержится всего около 1 % кремния, по отношению к массе подложки, на которую наносятся тонкие плёнки. Из-за малого расхода материалов на поглощающий слой, здесь кремния, тонкоплёночные кремниевые фотоэлементы дешевле в производстве, но пока имеют меньшую эффективность и неустранимую деградацию характеристик во времени. Кроме того, развивается производство тонкоплёночных фотоэлементов на других полупроводниковых материалах, в частности cis и cigs, достойных конкурентов кремнию. Так, например, в 2005 г. Компания "shell" приняла решение сконцентрироваться на производстве тонкоплёночных элементов, и продала свой бизнес по производству монокристаллических (нетонкоплёночных) кремниевых фотоэлектрических элементов. [5]

5. Солнечные электростанции и их воздействие
на окружающую среду

Хорошо известно отрицательное воздействие энергетических производств на окружающую среду. Тепловые электростанции, например, сжигают в своих топках ценное материальное сырье — уголь, нефть, газ, — которое в течение миллиарда лет накапливалось на Земле в результате сложных, до конца не понятых процессов. Уничтожение этих запасов будет преступлением перед грядущими поколениями. Работа ТЭС характеризуется значительным тепловым загрязнением биосферы. Не менее 60% энергии, полученной при сгорании углеводородного топлива, бесполезно рассеивается в атмосфере, что ведет к повышению средней мировой температуры, отрицательно влияет на динамику атмосферы, на погодные условия вокруг электростанции. В результате сгорания топлива образуются токсичные продукты — угарный газ, двуокись серы, окислы азота, углеводороды, твердые частицы. Особенно велики выбросы сернистых соединений. Токсичные продукты, попадая в атмосферу, губительно воздействуют на живую и неживую природу Земли. Таким образом, эксплуатация тепловых электростанций отличается значительным потреблением минерально-сырьевых ресурсов, тепловым и химическим загрязнением биосферы Земли. Важным параметром следует считать также воздействие на биосферу на этапе создания энергосистемы — при производстве основных элементов, транспортировке к месту строительства, строительстве. Создание ТЭС характеризуется малым воздействием на окружающую среду.

В случае солнечных электростанций имеет место обратная картина — малое воздействие на окружающую среду во время эксплуатации и большое воздействие на этапе создания системы. Расчеты показывают, что для одной космической солнечной электростанции полезной мощностью 5 млн. кВт потребуется 500 тыс. т алюмийия, 50 тыс. т кремния в качестве исходного материала для производства фотоэлектрических преобразователей, 150 млрд. кВт-ч электроэнергии для производства элементов конструкции станции и сопутствующих комплексов. Это может привести к нехватке сырья и энергии для развития других областей экономики государства-разработчика энергосистемы нового типа.

На этапе развертывания космической солнечной электростанции потребуется проводить большое число пусков сверхмощных ракет-носителей. При ограничении срока создания космической электростанции двумя годами частота пусков ракет-носителей грузоподъемностью 250 т составит не более двух суток. При этом в верхние слои атмосферы попадает более миллиона тонн продуктов сгорания ракетного топлива, в состав которых входят окислы азота, углерода, а также вода. Последствия такого загрязнения атмосферы непредсказуемы, очевидно, они будут носить негативный характер.

Важным аспектом эксплуатации космической солнечной электростанции следует также считать электромагнитное засорение среды. Непрерывная передача энергии из космоса на Землю в СВЧ-диапазоне волн будет представлять собой новый фактор неблагоприятного воздействия на биосферу. Максимальная плотность потока в энергетическом луче на поверхности Земли принимается равной 23 мВт/см2, на краю ректенны плотность снижается до значения 1 мВт/см2. На расстоянии около 7 км от центра ректенны плотность снизится до величины 10-2 мВт/см2; эта величина соответствует советскому медицинскому стандарту на безопасный уровень длительного СВЧ-облучения человека. Зона, лежащая внутри этого круга, может быть объявлена охранной, допускающей присутствие только обслуживающего персонала, облаченного в специальную одежду. Предстоит еще дополнительно исследовать воздействие электромагнитного излучения на флору, фауну, человека и технические устройства. Очевидно, что фоновое излучение будет создавать помехи работе приемных устройств радио- и телевизионных систем.

В целом по экологическим аспектам создания и эксплуатации космических солнечных электростанций может быть сделан вывод о том, что ее функционирование на орбите будет сопровождаться малым воздействием на окружающую среду, в то время как этапы производства и развертывания связываются со значительным потреблением сырьевых и энергетических ресурсов, большим тепловым и химическим загрязнением биосферы. Последствия такого загрязнения окружающей среды трудно предсказуемы, для их прояснения необходимы дополнительные исследования. [6]

Заключение

Мы бегло рассмотрели ряд интересных проектов использования энергии Солнца. Но для крупномасштабного производ­ства электрической энергии солнечная радиация пока не находит употребления. Между тем эта энергия могла бы иметь большое значение, в первую очередь для раз­вивающихся стран. Именно там особенно остро ощуща­ется нехватка энергии для промышленности, и в то же время многие из этих стран лежат в тропических и суб­тропических зонах, где яркое солнце светит до 300 дней в году! Использование солнечной энергии в производ­ственных процессах могло бы здесь в значительной мере заменить традиционные источники и стать началом «чистого» (не загрязняющего жизненную среду) решения энергетической проблемы.

В промышленно развитых государствах обостряющиеся экологические трудности и дефицит, энергии заставляют специалистов внимательно следить за экспериментами по прямому использованию солнечной энергии. Эта энергия не связана с появлением ды­ма, пыли или вредных газов, не оставляет радиоактивных отходов, и к тому же практически неисчерпаема. Солнечная радиация могла бы стать в будущем глав­ным и чистым источником энергии.

 

 




Поделиться с друзьями:


Дата добавления: 2015-05-08; Просмотров: 640; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.015 сек.