Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Особенности процессов отключения малых индуктивных и емкостных токов - ­­­Электрическая часть электростанций




При отключении больших токов (больше 100 А) гашение дуги происходит при естественном переходе тока через нуль. Опасных перенапряжений при этом не возникает, так как электромагнитная энергия контура Li2/2 = 0, а восстанавливающееся напряжение не превосходит двойной амплитуды рабочего напряжения сети.
Рис, 4-38, Срез переменного тока

Рис. 4-39. Схема замещения при отключении малого индуктивного тока
При отключении токов, меньших 25 А, часто возникают «срезы» тока — досрочный переход тока через нуль (рис. 4-38). Подобные срезы могут возникать в любой точке синусоиды тока, вплоть до амплитуды. Реально такой случай может иметь место, например, при отключении холостого хода трансформатора или при отключении шунтирующего реактора.
По новейшим данным срез тока объясняется наложением на ток дуги высокочастотных колебаний в контуре LC (рис. 4-39), состоящем из находящихся по обе стороны выключателя емкостей С1 и С2 и индуктивности L„, связывающей эти емкости. Собственная частота колебаний fL в таком контуре обычно очень велика (десятки килогерц), так как постоянные колебательного контура малы:
(4-54)
Здесь

Амплитуда высокочастотных колебаний может оказаться больше тока дуги, что и приведет к более раннему погасанию последней, в момент, когда эти токи направлены навстречу друг другу.
При отключении холостого хода трансформатора, сопровождающемся срезом тока, электромагнитная энергия, запасенная в индуктивности трансформатора., переходит в. электростатическую энергию заряда емкости, шунтирующей индуктивность. Емкость эта представляет собой емкость шин и вводов трансформатора.
Так как
то
(4-55)
Ток холостого хода трансформатора составляет единицы или десятки ампер, емкость трансформаторов очень мала (см. табл. 4-4), в то время как индуктивность, обусловленная рассеянием, достаточно велика. В результате имеет порядок 10—100 кО.ч и кратность перенапряжения может быть большой (4-5). Эти высокие кратности получаются, несмотря на активные сопротивления и потери в стали трансформаторов, демпфирующие перенапряжения
На рис. 4-40 приведены диаграммы процесса отключения холостого хода трансформатора для двух случаев. В первом случае срез тока происходит на подъеме, а во втором — на спаде синусоиды тока.
Как показывает опыт, очень часто перенапряжения, вызванные отключением тока среза, приводят к повторным зажиганиям дуги. С одной стороны, это нежелательно, так как задерживает ликвидацию короткого замыкания, а с другой — повторное зажигание является положительным фактором, так как при этом трансформатор, хотя и на короткое время, вновь подключается

Рис. 4-40. Изменение напряжения на зажимах трансформатора при одинаковом токе среза: а — на подъеме кривой тока; б — на спаде кривой тока
через дугу к сети, что позволяет части электромагнитной энергии перейти в сеть и понизить перенапряжения.
По некоторым данным наиболее опасные перенапряжения возникают при отключении индуктивных токов, находящихся в диапазоне от 5 до 40 А.
При отключении реакторов дуга в выключателе горит более устойчиво, так как токи, которые подлежат размыканию, больше токов холостого хода трансформаторов и по форме ближе к синусоиде. Поэтому очень часто ток среза при отключении реакторов значительно меньше, чем при отключении холостого хода трансформаторов. В то же время энергия, подводимая к дуге, больше и ее деионизация проходит медленнее, чем при отключении трансформатора.
Если перенапряжения, возникающие при меньших токах среза, недостаточны для того, чтобы вызвать повторные зажигания дуги, перенапряжения не будут демпфироваться. Следовательно, в этом случае коммутационные перенапряжения будут выше, чем при отключении холостого хода трансформаторов.
Если исходить из предположения, что при прочих равных условиях токи среза в обоих случаях одинаковы, продолжительность горения дуги при отключении реактора будет больше.
При отключении опережающего зарядного тока среза тока не наблюдается, однако в сети могут возникать значительные перенапряжения. Если зарядный ток отключается в момент естественного перехода через нуль, на отключенной линии остается заряд и связанный с ним постоянный потенциал, очень медленно спадающий при отводе заряда через утечку линии. Сохраняющееся в последующие моменты времени напряжение линии равно амплитуде рабочего напряжения (рис. 4-41).
Напряжение на другой стороне выключателя (б сторону шин) изменяется по синусоидальному закону и через 10 мс достигает амплитуды противоположного знака. В этот момент времени межконтактный промежуток будет находиться под двойной амплитудой сетевого напряжения. Если электрическая прочность промежутка восстановится к этому моменту времени до большего значения, отключение линии произойдет без повторного зажигания дуги. Если же по достижении сетевым напряжением амплитуды произойдет повторное зажигание дуги, то емкость, а следовательно, и линия окажутся по отношению к земле под двойным сетевым напряжением, которое может понизиться до амплитудного значения только в том случае, если собственная частота колебательного процесса будет настолько велика, что обрыва дуги не произойдет и дуговой промежуток останется ионизированным (рис. 4-42, а). Очевидно, это может иметь место только при отключении достаточно коротких линий, емкость которых мала. При отключении длинных линий после обрыва дуги на них сохранится напряжение, существенно большее питающего (рис. 4-42, б).

Рис. 4-41, Отключение холостого хода линии высокого напряжения без повторного зажигания дуги в выключателе
Так как эти повторные зажигания возникают при каждом пике синусоидального напряжения, изоляция линии может пробиться, если не предусмотрена соответствующая защита в виде вентильных разрядников.
Точно таким же образом протекают процессы при отключении конденсаторных батарей.
Следовательно, отключение холостых линий высокого напряжения и конденсаторных батарей должно производиться так, чтобы не возникали повторные зажигания дуги. Это может быть обеспечено применением шунтирующих сопротивлений для двухступенчатого отключения, а также комбинированного дутья у малообъемных масляных выключателей (см. § 5-3).

Рис. 4-42. Коммутационные перенапряжения при отключении емкости; а — малой; б — большой


Рис. 4-43. Коммутационные перенапряжения на подстанции с нейтралью, заземленной через ЗРОМ
Опасные коммутационные перенапряжения могут возникнуть в сетях с компенсированной нейтралью при проведении на подстанциях коммутационных операций с компенсирующими заземляющими устройствами (ЗРОМ). Если, например, от подстанции (рис. 4-4-3) отходит только одна линия, то при ее отключении может возникнуть режим, при котором зарядные токи в фазах А и В уже отключены, а в фазе С еще течет ток /, который замыкается на землю через трансформатор и дугогасящую катушку. Если теперь ток в фазе С будет отключен не при естественном переходе через нуль, то в момент размыкания дугогасительная катушка будет обладать электромагнитной энергией LPI2. Так как, однако, дуга погасла и цепи тока не существует, а емкость линии отделена от схемы, емкость контура состоит лишь из емкости по отношению к земле сборных шин трансформатора и дугогасящей катушки. Эта маленькая емкость должна воспринять электромагнитную энергию дугогасящей катушки, т. е.

При этом возникают значительные (4—5-кратные) перенапряжения.
Если к шинам подстанции присоединены несколько линий большой емкости или нейтраль на подстанции при коротком замыкании кратковременно заземляется через вентильный разрядник (искусственная нулевая точка), опасных перенапряжений не возникает. Если такая схема не предусмотрена, отключение последней линии должно производиться от руки с предварительным отсоединением дугогасящей катушки.
Легко избежать трудностей отключения дугогасящей катушки включением параллельно с ней вентильного разрядника.
Для уменьшения перенапряжений при отключении малых индуктивных и емкостных токов рекомендуются следующие меры.

Если в выключателях на низкой и высокой стороне трансформатора применен одинаковый способ гашения дуги, отключение холостого хода трансформатора следует производить на стороне низкого напряжения (больше токи и устойчивей дуга).
Если в выключателях применены разные способы гашения дуги, следует отключать тем выключателем, который надежней гасит дугу.
Холостой ход трансформатора ни в коем случае не следует отключать одновременно обоими выключателями (с высокой и низкой сторон).
Следует избегать совместного отключения нескольких индуктивностей, включенных последовательно (например, главный трансформатор и регулировочный бустерный трансформатор или трансформатор и дугогасящая катушка).
Следует избегать отключения дугогасящих катушек, находящихся под током и не шунтированных вентильным разрядником.
На длинных линиях высокого и сверхвысокого напряжения рекомендуется устанавливать выключатели, у которых вероятность повторных зажиганий дуги меньше, например быстродействующие воздушные выключатели с шунтирующими сопротивлениями.




Поделиться с друзьями:


Дата добавления: 2015-05-08; Просмотров: 1300; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.008 сек.