Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Примеры открытых распределительных устройств




Для выбора компоновки и решения конструкций ОРУ необходимо иметь следующие данные: схему электрических соединений, в которой отражены способы заземления нейтралей и регулирования напряжения, а также перспективы расширения; климатические условия района (включая интенсивность грозовой деятельности), определяющие выбор изоляции по возможным перенапряжениям; длительные номинальные токи нагрузки сборных шин и присоединений; возможные токи и мощности короткого замыкания; имеющуюся в распоряжении территорию, рельеф местности; направление трасс подходящих и отходящих присоединений и их вид (воздушные или кабельные); местные строительные материалы, транспортные, монтажные и ремонтные условия; требования к защите сооружений от сейсмических воздействий, снежных заносов, селевых потоков, ударной волны и т. п.; требования промышленной эстетики сооружений.


Рис. 10-14. Разрез ЗРУ 220 кВ с сокращенными промежутками, выключателями со втычными контактами и с ОПН-220, для полуторной схемы

Рис. 10-15. ЗРУ 400 кВ ТЭС «Вест Бартон». Поперечный разрез по одной половине здания
I — трансформатор напряжения; 2 — заземляющий разъединитель; 3 — линейный разъединитель; 4 — воздушный выключатель; 5 — шинный разъединитель; 6 — резервная система шин; 7 — основная система шин; 8 — ось симметрии здания РУ
Следует иметь в виду, что иногда специфические местные условия компоновки и конструкций могут в свою очередь влиять на выбор схемы электрических соединений РУ.
В любом случае при проектировании рассматриваются и сравниваются между собой несколько вполне подходящих для данных условий вариантов компоновки и конструкций ОРУ.
В качестве ОРУ в сельских местностях большое распространение получили столбовые (мачтовые) подстанции 6—10 кВ. Строительная часть выполняется из местного леса — бревен диаметром 22—24 см. Подстанции устанавливаются как промежуточные П-образного типа и как тупиковые АП-образные. Трансформатор мощностью 10—100 кВ'А располагается на ригелях на высоте 4—5 м, рядом с трансформатором находится площадка для его обслуживания. Подключение к линии 6—10 кВ производится через разъединитель РЛН-10 и трубчатые предохранители ПКС. Шкаф с аппаратами низкого напряжения устанавливается внизу для удобства обслуживания с поверхности земли. Отходящие линии 380/220 В тоже воздушные.
В последнее время небольшие подстанции 6—10 кВ предусматриваются в виде К.ТПН заводского исполнения (см. рис. 10-42).
На рис. 10-16 показано однопортальное ОРУ 35 кВ для схемы с одной системой сборных шин. Конструкция выполнена по вертикальному принципу сверху вниз (шины, разъединители, выключатели). Она очень компактна с минимальными размерами в плане. Однако эта конструкция требует довольно большого количества металла и трудоемкого монтажа.
На рис. 10-17 дан схематический чертеж разработанной в нашей стране компоновки типовых ОРУ 110—500 кВ на сборных железобетонных конструкциях для схемы с двумя основными и третьей обходной системой сборных шин. Для всех указанных напряжений компоновка конструкций ОРУ принята одинаковой, изменяются лишь размеры конструкций, расстояния между фазами, до заземленных частей, высоты, проезды и т. п.
Имеется в виду, что ОРУ располагается на ровной площадке: это обычно для тепловых (в том числе и атомных) станций, а также районных подстанций.
В топографических условиях ГЭС часто бывает трудно найти или создать ровную площадку необходимых размеров. Приходится, применяясь к местности, выбирать ступенчатое расположение конструкций ОРУ, иногда с большим превышением одной ступени относительно другой. Варианты ступенчатого расположения конструкций для напряжения 110 кВ показаны на рис. 10-18. Выбор варианта производится технико-экономическим сравнением для местных условий. Следует отметить, что монтаж и эксплуатация ступенчатого ОРУ сложнее, так как персоналу и транспорту приходится преодолевать подъемы и спуски в любых погодных условиях.



 


Рис. 10-16. Однопортальное ОРУ 35 кВ

Рис. 10-17. Компоновка и размеры типовых ОРУ 110—500 кВ на сборных железобетонных конструкциях с двумя основными и третьей обходной системой шин

Обозначение на рисунке Размер, м, при напряжении, кВ
а 8,0 11,5 11,75 18,0 29,0
б 9,0 9,5 12,0 19,6 26,8
в 12,5 15,0 18,25 20,4 29,0
г 10,5 16,0 20,5 31,5 45,0
д 9,0 11,1 15,4 22,0 31,0
е 2,5 3,0 4,0 8,0 11,0
ж 2,0 2,55 3,7 4,0 5,5
7,5 8,0 11,0 11,0 14,5
и 11,0 13,0 16,5 16,5 23,6
к 3,0 4,25 4,0 4,5 6,0
л 1,5 2,13 3,25 3,5
м   5,0

Иногда, при расположении сооружений ГЭС в узком ущелье, принять даже ступенчатый вариант невозможно. В этом редком случае можно располагать конструкции ОРУ на кровле здания ГЭС. Установка опор, порталов и расположение оборудования на крыше здания ГЭС требуют более сложных и тяжелых конструкций перекрытий, что часто является причиной протечек в машинный зал, неудобно для кабельных коммуникаций и для эксплуатации.

Рис. 10-18, Варианты ступенчатого расположения ОРУ 110 кВ
Поэтому при освоении промышленностью различных конструкций комплектных РУ более удобны, а следовательно, предпочтительны в таких условиях герметизированные элегазовые КРУЭ внутренней и наружной установки.
В обычных компоновках ОРУ 35—220 кВ с двойной системой сборных шин, проектируемых на ровной площадке, применяется двухрядное расположение выключателей с чередованием ячеек трансформаторов и линий.
С одной стороны от сборных шин располагается ряд трансформаторных выключателей, а с противоположной стороны от сборных шин — ряд выключателей линии.
По вертикали вся коммутация выполняется как бы в два яруса. Нижний ярус (иногда верхний) — это поперечная коммутация сборных шин; верхний ярус (иногда нижний) — это продольная коммутация присоединений: ячеек трансформаторов, междушинного выключателя, измерительных трансформаторов, разрядников и отходящих линий.
Чем выше напряжение, тем больше размеры площадок, и естественно желание сократить длину подстанции. С этой целью появились компоновки ОРУ с однорядным расположением выключателей.
Преимущество однорядных компоновок становится еще более существенным для полуторной схемы электрических соединений. При трехрядном расположении выключателей длина ОРУ получается очень большой, а при преимущественном чередовании ячеек трансформаторов и линий и ширина получается неоправданно большой (см. рис. 10-27 для ОРУ 500 кВ). Если для той же схемы и тоже с чередованием подключений принять однорядное расположение выключателей (см. рис. 10-29), длина ОРУ существенно сокращается, а ширина увеличивается всего в 1,5 раза. Площадь ОРУ уменьшается при этом в 1,4 раза.
Но чаще всего выбор двухрядной (трехрядной) или однорядной компоновки диктуется рельефом местности, где должно быть расположено ОРУ.

Рис. 10-19, Поясняющая схема к рис. 10-20: а — мостик; б — схема компоновки конструкции ОРУ 110 кВ


Рис, 10-20, ОРУ 110 кВ по схеме «мостик» с выключателями на линиях и в перемычке

Пряморядные компоновки (однорядные или двухрядные) применяются и для «фигурных» схем ОРУ, например для схем «мостик», «квадрат», схем многоугольников и других схем с поперечными связями блоков.
Покажем в виде примера схему «мостик» в конструкции ОРУ 110 кВ и компоновку ОРУ 220 кВ для схемы «квадрат», тоже при однорядном расположении выключателей. Вся коммутация ОРУ выполняется соответственно поясняющей схеме (схеме заполнения), которая помогает читать и понимать чертежи конструкций.
Рис. 10-19 и 10-20 — это схема «мостик» с выключателями в цепях линий. За линейными выключателями предусмотрена перемычка с двумя разъединителями, служащими для сохранения связи между линиями при ремонте одного или одновременно двух выключателей. Два разъединителя на перемычке необходимы для ремонта каждого из них одновременно с ремонтом (отключением) линии при работающей другой линии. В цепях трансформаторов предусмотрены отделители, служащие для дистанционного отключения трансформаторов при снятой нагрузке.
Полюсы разъединителей у выключателей первой цепи установлены перпендикулярно поперечным шинам. Полюсы разъединителей у выключателей третьей цепи установлены ступенчато и параллельно поперечным шинам. В этой цепи провода крепятся на дополнительных опорных изоляторах.
Поясняющая схема и фрагмент конструкции ОРУ 220 кВ для схемы «квадрат» представлены на рис. 10-21 и 10-22.
На рис. 10-23—10-25 представлено ОРУ 330 кВ, выполненное для схемы с двумя основными и обходной системами шин: на рис. 10-23 — схема заполнения, на рис. 10-24 — разрез по ячейке трансформатора, на рис. 10-25 — разрез по ячейке линии. В конструкции принято однорядное расположение выключателей, один автодорожный путь, коммутация расщепленными фазами при гибкой ошиновке.
Однорядная компоновка здесь возможна при подходе к сборным шинам всех присоединений с одной стороны. Если подходы от трансформаторов и линий предусмотрены с разных сторон ОРУ, появляется необходимость в трехъярусной коммутации отходящих линий (рис. 10-25), верхний ярус — ярус обхода сборных шин для присоединения с противоположной стороны (на рис. 10-24 это ячейки трансформаторов).

Рис. 10-2!, Поясняющая схема к рис. 10-22: а — квадрат; б — схема компоновки конструкции ОРУ 220 кВ


Рис. 10-22. Фрагмент ОРУ 220 кВ по схеме «квадрат». Разрез и план ячейки


Рис. 10-23. ОРУ 330 кВ для схемы с двумя основными и обходной системами шин. Схема заполнения


Рис. 10-24. ОРУ 330 кВ. Разрез и план ячейки силового трансформатора

Рис. 10-25. ОРУ 330 кВ. Разрез и план ячейки отходящей линии


Рис. 10-26. ОРУ 500 кВ для полуторной схемы электрических соединений с трехрядной установкой выключателей и размещением шунтовых реакторов со стороны линейных порталов:
1— высокочастотный дроссель; 2 — шунтовой реактор ОРУ. Нижний ярус — коммутация сборных шин, над ней — коммутация
Третий ярус коммутации требует повышенных опор и выносного кронштейна на крайней опоре для обхода второго яруса коммутации.
В рассматриваемой конструкции применены железобетонные опоры с оттяжками, порталы для сборных шин, столики на фундаментах под выключатели, разъединители, измерительные трансформаторы и разрядники.
Вся коммутация ОРУ осуществляется соответственно схеме заполнения, которая помогает читать и понимать чертежи конструкций.
На рис. 10-26—10-30 представлены варианты конструкций ОРУ 500 кВ, различающиеся компоновкой оборудования ячеек в плане. Рисунки выполнены для одной и той же, в данном случае наиболее рекомендуемой по условиям надежности, полуторной схемы электрических соединений.
На рис. 10-26 — вариант трехрядной установки выключателей при расположении шунтовых реакторов со стороны линий. Здесь все выключатели трансформаторов располагаются в один ряд с одной стороны ОРУ (на рисунке справа), а все выключатели линий — в ряд с другой стороны ОРУ, т. е. не выполняется чередование ячеек трансформаторов и линий. Ширина ОРУ определяется шагом ячеек и их числом. На ОРУ предусмотрено три дороги вдоль трех рядов выключателей. Ширина дорог, проездов между аппаратами, высота опор и вся коммутация выбираются с обязательным учетом транспортных средств и габаритов монтажно-ремонтных механизмов.

Рис. 10-27. ОРУ 500 кВ для полуторной схемы электрических соединений с трехрядной установкой выключателей и чередованием присоединения трансформаторов и линий
Рис. 10-27 — то же, но с установкой шунтовых реакторов в один ряд с повышающими трансформаторами вдоль общего железнодорожного пути и с чередованием присоединения трансформаторов и линий. В этом варианте для выполнения коммутации с чередованием присоединений трансформаторов и линий потребовалось две ячейки по ширине для каждой пары присоединений, так что общая ширина ОРУ получилась в два раза больше.
При двухрядной установке (рис. 10-28) на продольном разрезе имеется четыре портала, из них два средних — это порталы сборных шин, а два крайних служат для подвески перемычек между выключателями. Чередование присоединений трансформаторов и линий здесь осуществляется просто, однако при двухрядной компоновке снижается наглядность монтажа, увеличиваются число ячеек по ширине и общая площадь ОРУ.
В компоновке по рис. 10-29 при однорядной установке выключателей продольная коммутация трансформатор — линия имеет четыре участка поперечных связей с порталами.

Рис. 10-28. ОРУ 500 кВ для полуторной схемы электрических соединений с двухрядной установкой выключателей и чередованием мест присоединения трансформаторов и линий
Из них два крайних служат для сборных шин, а два средних являются перемычками между выключателями. Однорядная компоновка также характеризуется меньшей наглядностью, увеличенной площадью ОРУ, увеличенным объемом металлоконструкции и числом гирлянд изоляторов.
Наконец, на рис. 10-30 приведена компоновка ОРУ с четырехрядным расположением выключателей. Принято Н-образное расположение сборных шин с Н-образным расположением каждой пары смежных цепей.
На рис. 10-31 показана идея принятой компоновки в упрощенном виде для П-образного расположения сборных шин с односторонним присоединением четырех цепей элементов и для Н-образного расположения сборных шин с двухсторонним присоединением восьми элементов.
Последняя схема (в) с размещением трансформаторов и линейных отходов с двух сторон ОРУ может найти применение при расширении ТЭС (второй корпус ТЭС с другой стороны ОРУ), на подземных ГЭС с выводами от генераторов на поверхность в разнесенных друг от друга шахтах ГЭС, для снижения уязвимости объекта и т. д.
В табл. 10-6 произведено сопоставление размеров площадок ОРУ, затрат металлоконструкций и гирлянд изоляторов для приведенных компоновок конструкций ОРУ.

Рис. 10-29. ОРУ 500 кВ для полуторной схемы электрических соединений с однорядной установкой выключателей и чередованием мест присоединения трансформаторов и линий


Рис. 10-30. ОРУ 500 кВ для полуторной схемы электрических; соединений с четырехрядной установкой выключателей. План и разрез


Рис. 10-31. ОРУ 500 кВ.
Поясняющие схемы к рис. 10-30: а — исходная полуторная схема; б — П-образные СШ с односторонним двухрядным расположением выключателей; в — Н-образные шины с двусторонним четырехрядным расположением выключателей

Представляет интерес размещение конструкций ОРУ 500 кВ на весьма стесненной площадке, в узком каньоне нижнего бьефа ГЭС. На рис. 10-32 представлен фрагмент конструкции — разрез и план ячейки такого ОРУ. Здесь практически использованы все возможности, сопутствующие применению ограничителей перенапряжения ОПНИ-БООУ1. Сокращены все воздушные изоляционные промежутки (до 3 м) и все ремонтно-эксплуатационные промежутки, зависящие от них. Вертикально расположены участки поперечной коммутации, компактно установлены аппараты: выключатели ВВБК-500-50/3200У1, малогабаритные разъединители РГЗ-500/Э200У1 с межконтактным промежутком 3,1 м (с уменьшенной длиной полуножей), подвесные разъединители РПД-500-2/3200У1, ограничители перенапряжений ОПНИ-БООУ1 с заградителями на них, трансформаторы тока ТРН-500У1, трансформаторы напряжения НДЕ-500-72У1.
Все это дало возможность уменьшить шаг ячейки до 24 м вместо 28—31 м, а общую длину по фронту сократить на 48 м.
Каждый вариант рассмотренных компоновок имеет свои идеи построения, которыми определяется принцип компоновки, свое расположение сборных шин, свои особенности, обеспечивающие надежность, наглядность и удобство эксплуатации, и характеризуется числом опор, порталов, гирлянд, проводов, размерами площадок

Установка выключателей

Показатель трехрядная двух- рядная одно рядная четырех рядная
  по рис. 10-26 по рис. 10-27 по рис. 10-28 по рис. 10-29 по рис. 10-30
Длина ОРУ, м 249,4 232,7 247,4 206,3 255,9
Ширина ОРУ, м
Площадь ОРУ, м2/% Затраты металлоконструкций, шт,: 27 900/100 52 192/187 62 345/223 69 300 248 43 000/154
колонны высотой 23 м
колонны высотой 15 м
траверсы длиной 28 м
траверсы длиной
Суммарная длина колонн и траверс, м/% 993/100 1984/200 2536/255 2777/280 1374/138
Число натяжных гирлянд изоляторов, шт. / % 108/100 144/133 192/177 228/211 132/122

На рис, 10-33 дана конструкция ОРУ 750 кВ, выполненная для полуторной схемы электрических соединений. Конструкция имеет четыре ячейки для восьми присоединений к шинам при трехрядном размещении выключателей. Общие размеры площадки 195x331 м, шаг ячейки 45 м. Высота ячейковых опор 34 м, шинных порталов 22 м, расстояние между фазами 10 м. В конструкции предусмотрены выключатели типа ВВБ-750 и разъединители типа РЛНД-750.
На рис. 10-34 и 10-35 представлена конструкция ОРУ 750 кВ для схемы многоугольника. Компоновка с однорядным расположением выключателей и зигзагообразной ошиновкой предусматривает при постепенном расширении последовательный переход от схемы треугольника к схеме квадрата и дальше к схемам пяти- и шестиугольника. Даются поясняющие схемы последовательного расширения. План выполнен для схемы треугольника.
На рис. 10-36 и 10-37 тоже дана конструкция ОРУ 750 кВ для аналогичной схемы многоугольника с возможностью расширения при сохранении установленных порталов сборных шин и оборудования. ОРУ скомпоновано с двухрядным расположением выключателей. При двухрядной компоновке по сравнению с однорядной требуется меньшее количество металлоконструкций, ошиновки и гирлянд изоляторов. Возможны и иные компоновки для других вариантов схем.



Рис. 10-32. Разрез и план ячейки малогабаритного ОРУ 500 кВ на базе ОПНИ-500У1


Рис. 10-33, ОРУ 750 кВ для полуторной схемы электрических соединений
1, 2, 3, 4 — номера ячеек


Рис, 10-34. ОРУ 750 кВ для схемы многоугольника с однорядным расположением выключателей. Поясняющие схемы и продольные разрезы


522

Рис. 10-35. ОРУ 750 кВ (к рис. 10-34). План по схеме треугольника
От трансформатора
Рис. 10-36. ОРУ 750 кВ для схемы многоугольника с двухрядным расположением выключателей. Поясняющие схемы и план I этапа


Рис. 10-37. ОРУ 750 кВ (к рис. 10-36). Разрезы ОРУ
В настоящее время осваивается напряжение переменного тока 1150 кВ для передачи больших мощностей от сверхмощных ГЭС на далекие расстояния и для магистральных межсистемных связей на обширных пространствах восточных районов нашей стране.
Конструкции ОРУ 1150 кВ двух цепей трансформатор - линия представлены: на рис. 10-38 для полуторной схемы с трехрядным расположением выключателей и чередованием присоединений трансформаторов и линий и на рис. 10-39 — тоже для полуторной схемы, но с вертикальной компоновкой сборных шин и однорядным расположением выключателей.

Рис. 10-38. ОРУ 1150 кВ для полуторной схемы с трехрядным расположением выключателей
Для облегчения усвоения этой компоновки приводится поясняющая схема.

В этих конструкциях применены горизонтальное расположение сборных шин и подвесные разъединители. Междуфазные расстояния 12 м, шаг ячеек 44 м, высота шинных опор 35 м, ячейковых и линейных опор 50 м.
Выбор варианта конструкции зависит от рельефа местности и габаритов удобной площадки при станции.


Рис. 10-39. ОРУ 1150 кВ для полуторной схемы с однорядным расположением выключателей

В последние годы в нашей стране и за рубежом для распределительных устройств 110—220 кВ и выше все шире внедряются конструкции с жесткой ошиновкой. Шинные опоры при этом собираются из опорно-штыревых изоляторов ОНШ-35-2000, которые рассматриваются как упругие опоры.
Электродинамическая стойкость шинных конструкций с подобными составивши изоляционными опорами зависит от жесткости и частоты собственных колебаний этих опор и определяется главным образом прочностью и надежностью опорных изоляторов. Расчет электродинамической стойкости неразрезных шин на упругих опорах, собранных из опорно-штыревых изоляторов, при недостаточно жестких соединениях требует специальной методики расчета.
Расчетные допустимые и разрушающие нагрузки составных шинных опор определяются исходя из момента сил в опасном сечении, расположенном на нижней плоскости фарфоровой шапки у заделки чугунного штыря.
С целью применения в реальных проектах разработаны также типовые рабочие чертежи ОРУ 330 и 500 к В для нормальных и загрязненных условий атмосферы, для II и IV районов условий по гололеду, типовые чертежи ОРУ 750 и 1150 кВ с подвесными разъединителями.





Дата добавления: 2015-05-08; Просмотров: 918; Нарушение авторских прав?;


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



ПОИСК ПО САЙТУ:


Читайте также:

  1. А. Примеры
  2. Билет №10(2).Расскажите, в чём различие между скоростными и силовыми качествами человека, с помощью каких упражнений их можно развивать. Приведите примеры.
  3. Билет №15(2).Раскройте современные спортивно-оздоровительные системы физических упражнений по формированию культуры движений и телосложения. Приведите примеры из личного опыта.
  4. Билет №19(1).Расскажите о значении спортивной терминологии при занятиях физическими упражнениями. Предварительная и исполнительная команды (приведите примеры).
  5. Вложенные запросы. Примеры.
  6. ВНИМАНИЕ! Аккуратно обращайтесь с персональным компьютером и его периферийными устройствами. Соблюдайте требования эргономики. Проверьте наличие заземления устройств.
  7. Вопрос 44. Незаконный оборот оружия, его основных частей, боеприпасов, взрывчатых веществ и взрывных устройств.
  8. Выбор токоведущих частей распределительных устройств - ­­­Электрическая часть электростанций
  9. Гибкость как физическое качество (определение, виды гибкости, примеры упражнений).
  10. Дифференциальная диагностика алалии от отсутствия речи при умственной отсталости, РДА, ЗРР. Приведите примеры заданий для обследования.
  11. Дифференциальное уравнение Бернулли. Примеры решений
  12. Допустимые показатели ТНС-индекса (°С) для рабочих помещений с нагревающим микроклиматом независимо от периода года и открытых территорий в теплый период года




studopedia.su - Студопедия (2013 - 2017) год. Не является автором материалов, а предоставляет студентам возможность бесплатного обучения и использования! Последнее добавление ‚аш ip: 54.205.126.164
Генерация страницы за: 0.168 сек.