Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Атомные электростанции




В атомной электростанции (АЭС) атомная (ядерная) энергия преобразуется в электрическую. Генератором энергии на АЭС является атомный реактор. Тепло, которое выделяется в реакторе в результате цепной реакции деления ядер некоторых тяжёлых элементов, так же, как и на обычных тепловых электростанциях (ТЭС), преобразуется в электроэнергию, рис. 2.13.

Первая в мире АЭС опытно-промышленного назначения мощностью 5 Мвт была пущена в СССР 27 июня 1954 г. в г. Обнинске. До этого энергия атомного ядра использовалась в военных целях. Пуск первой АЭС ознаменовал открытие нового направления в энергетике, получившего признание на 1-й Международной научно-технической конференции по мирному использованию атомной энергии (август 1955 г., Женева).

В 1958 г. была введена в эксплуатацию 1-я очередь Сибирской АЭС мощностью 100 МВт (полная проектная мощность 600 МВт). В том же году развернулось строительство Белоярской АЭС, а 26 апреля 1964 г. генератор 1-й очереди (блок мощностью 100 МВт) выдал ток в Свердловскую энергосистему, 2-й блок мощностью 200 МВт был сдан в эксплуатацию в октябре 1967 г.

В отличие от ТЭС, работающих на органическом топливе, АЭС работает на ядерном топливе (U233, U235, Pu239). В остальном атомные электростанции остаются тепловыми электростанциями, работающими по циклу преобразования жидкости в пар и наоборот.

Использование атомного топлива очень экономично, так как при делении 1 г изотопов урана или плутония высвобождается 22500 кВт×ч, что эквивалентно энергии, содержащейся в 2800 кг условного топлива. То есть из 1 кг урана можно получить столько же теплоты, сколько при сжигании примерно 3000 т каменного угля.

Принципиальная схема АЭС с ядерным реактором, имеющим водяное охлаждение, приведена на рис. 2.13. Тепло выделяется в активной зоне реактора, теплоносителем вбирается водой (теплоносителем 1-го контура), которая прокачивается через реактор циркуляционным насосом. Нагретая вода из реактора поступает в теплообменник (парогенератор), где передаёт тепло, полученное в реакторе, воде 2-го контура. Вода 2-го контура испаряется в парогенераторе и образовавшийся пар поступает в турбину.


Рис. 2.13. Технологические схемы АЭС:

а – одноконтурная, б – двухконтурная, в – трехконтурная

 

В зависимости от вида и агрегатного состояния теплоносителя создается тот или иной термодинамический цикл АЭС.

На АЭС с тепловым реактором, который охлаждается водой, обычно пользуются низкотемпературными паровыми циклами. Реакторы с газовым теплоносителем позволяют применять относительно более экономичные циклы водяного пара с повышенным начальным давлением и температурой. Тепловая схема АЭС в этих двух случаях выполняется 2-контурной: в 1-м контуре циркулирует теплоноситель, 2-й контур - пароводяной. При реакторах с кипящим водяным или высокотемпературным газовым теплоносителем возможна одноконтурная тепловая АЭС. В кипящих реакторах вода кипит в активной зоне, полученная пароводяная смесь сепарируется и насыщенный пар направляется или непосредственно в турбину, или предварительно возвращается в активную зону для перегрева, рис. 2.13. В высокотемпературных графито-газовых реакторах возможно применение обычного газотурбинного цикла. Реактор в этом случае выполняет роль камеры сгорания.

При работе реактора концентрация делящихся изотопов в ядерном топливе постепенно уменьшается и топливо выгорает. Поэтому со временем их заменяют свежими. Ядерное горючее перезагружают с помощью механизмов и приспособлений с дистанционным управлением. Отработавшее топливо переносят в бассейн выдержки, а затем направляют на переработку.

К реактору и обслуживающим его системам относятся: собственно реактор с биологической защитой, теплообменники, насосы или газодувные установки, осуществляющие циркуляцию теплоносителя; трубопроводы и арматура циркуляции контура; устройства для перезагрузки ядерного горючего; системы спец. вентиляции, аварийного расхолаживания и др.

В зависимости от конструктивного исполнения реакторы имеют отличительные особенности: в корпусных реакторах топливо и замедлитель расположены внутри корпуса, несущего полное давление теплоносителя; в канальных реакторах топливо, охлаждаемые теплоносителем, устанавливаются в спец. трубах-каналах, пронизывающих замедлитель, заключённый в тонкостенный кожух. Такие реакторы применяются в России (Сибирская, Белоярская АЭС и др.).

Краткое описание основных типов конструкций энергетических атомных реакторов:

1) легководный, или корпусной, реактор - использует в качестве замедлителя и теплоносителя обычную воду. В России это реакторы типа ВВЭР-1000 (водо-водяной энеpгетический pеактоp), в странах Запада - BWR (кипящий водяной реактор) и PWR (реактор с водой под давлением);

2) уранграфитовый реактор канального типа - бескоpпусной реактор с графитовым замедлителем, теплоноситель – вода, тепловыделяющие элементы расположены в вертикальных каналах графитовой кладки. Реакторы такого типа мощностью 1000 МВт и более называются РБМК (реактор большой мощности канальный) или LWGR;

3) CANDU - тип теплового ядерного реактора, разработанного в Канаде и широко там применяемого. В нем используется естественный необогащенный уран и тяжелая вода в качестве замедлителя и теплоносителя;

4) газографитовый реактор - охлаждается газом (в основном гелием или CO2), в котором графит используется как замедлитель. Действующие установки имеются в США и Англии (тип - AGR);

5) реактор на быстрых нейтронах (БН) - ядерный реактор, в котором основное число делений вызвано быстрыми нейтронами. Не имеет замедлителя. В качестве теплоносителя используется жидкий металл (натрий). Действуют во Франции (FENIX), России и Казахстане (БН), а также в Японии (MONZU).

Выбор преимущественно применяемого типа реактора определяется главным образом накопленным опытом в реакторостроительстве, а также наличием необходимого промышленного оборудования, сырьевых запасов и т.д. В России строят в основном графитоводные и водо-водяные реакторы. На АЭС США наибольшее распространение получили водо-водяные реакторы. Графитогазовые реакторы применяются в Англии. В атомной энергетике Канады преобладают АЭС с тяжеловодными реакторами.

Для предохранения персонала АЭС от радиационного облучения реактор окружают биологической защитой, основным материалом для которой служат бетон, вода, серпантиновый песок.

Оборудование реакторного контура обычно устанавливают в герметичных боксах, которые отделены от остальных помещений АЭС биологической защитой и при работе реактора не обслуживаются. За выполнением правил радиационной безопасности персоналом АЭС следит служба дозиметрического контроля.

При авариях в системе охлаждения реактора для исключения перегрева и нарушения герметичности оболочек ТВЭЛов предусматривают быстрое (в течение несколько секунд) глушение ядерной реакции; аварийная система расхолаживания имеет автономные источники питания.

Оборудование машинного зала АЭС аналогично оборудованию машинного зала ТЭС.

Отличительная особенность большинства АЭС - использование пара сравнительно низких параметров, насыщенного или слабо перегретого. При этом для исключения эрозионного повреждения лопаток последних ступеней турбины частицами влаги, содержащейся в пару, в турбине устанавливают сепарирующие устройства. Иногда применяют выносные сепараторы и промежуточные перегреватели пара.

АЭС являются наиболее современным видом электростанций и имеют ряд существенных преимуществ перед другими видами электростанций: при нормальных условиях функционирования они абсолютно не загрязняют окружающую среду, не требуют привязки к источнику сырья и соответственно могут быть размещены практически везде.




Поделиться с друзьями:


Дата добавления: 2015-05-08; Просмотров: 1192; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.016 сек.