Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Термоэлектрические генераторы




Из всех устройств, непосредственно преобразующих тепловую энергию в электрическую, термоэлектрические генераторы (ТЭГ) относительно небольшой мощности применяются наиболее широко.

Основные достоинства ТЭГ: 1) отсутствуют движущиеся части; 2) нет необходимости в высоких давлениях; 3) могут использоваться любые источники теплоты; 4) имеется большой ресурс работы.

В качестве источников энергии ТЭГ широко используют на космических объектах, ракетах, подводных лодках, маяках и многих других установках.

В зависимости от назначения ТЭГ могут преобразовывать в электрическую энергию теплоту, получаемую в атомных реакторах, энергию солнечной радиации, энергию органического топлива и т. д. Тепловая энергия, получаемая при распаде радиоактивных изотопов и делении ядер тяжелых элементов в реакторах, стала применяться в ТЭГ с конца 50-х годов.

Принцип работы термоэлемента основан на эффекте 3еебека. В 1921 г. Зеебек сообщил об экспериментах, связанных с отклонением магнитной стрелки вблизи термоэлектрических цепей. В этих исследованиях Зеебек не рассматривал задачу получения энергии. Сущность открытого эффекта состоит в том, что в замкнутой цепи, состоящей из разнородных материалов, протекает ток при разных температурах контактов материалов.

 

Рис. 2.26. Термоэлектрический генератор

 

Эффект Зеебека можно качественно объяснить тем, что средняя энергия свободных электронов различна в разных проводниках и по-разному увеличивается с повышением температуры. Если вдоль проводника существует перепад температур, то возникает направленный поток электронов от горячего спая к холодному, вследствие чего у холодного спая образуется избыток отрицательных зарядов, у горячего - избыток положительных. Поток этот более интенсивен в проводниках с большой концентрацией электронов. В простейшем термоэлементе, замкнутая цепь которого состоит из двух проводников с разными концентрациями электронов и спаи поддерживаются при разных температурах, возникает электрический ток. Если цепь термоэлемента разомкнута, то накопление электронов на холодном конце увеличивает его отрицательный потенциал до тех пор, пока не установится динамическое равновесие между электронами, смещающимися к холодному концу, и электронами, уходящими от холодного конца под действием возникшей разности потенциалов. Чем меньше элекгропроводность материала, тем меньше скорость обратного перетока электронов, следовательно, тем выше ЭДС. Поэтому полупроводниковые элементы более эффективны, чем металлы.

В настоящее время созданы полупроводники, работающие при температуре более 500 °С. Однако для промышленного ТЭГ потребуется температуру горячего спая довести примерно до 1100 °С. При таком повышении температуры полупроводники различных типов проявляют тенденцию к превращению в собственно полупроводники, у которых числа носителей положительных и отрицательных зарядов равны. Эти заряды при создании градиента температуры перемещаются от горячего спая к холодному в равном количестве и, следовательно, накапливание потенциала не происходит, т. е. не создается термоЭДС. Собственно полупроводники бесполезны для целей генерирования термоэлектрического тока.

В настоящее время широко ведутся исследования по созданию полупроводников, работающих при высоких температурах




Поделиться с друзьями:


Дата добавления: 2015-05-08; Просмотров: 372; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.009 сек.