Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Самоорганизации различных систем




3.1. ЯЧЕЙКИ БЕНАРА.

Для того, чтобы экспериментально изучить структуры, достаточно иметь сковороду, немного масла и какой ни будь мелкий порошок, чтобы было заметно движение жидкости. Нальем в сковороду масло с размешанным в нем порошком и будем подогревать ее снизу (рис. 3.1)

Рис. 3.1. Конвективные ячейки Бенара.

Если дно сковороды плоское и нагреваем мы ее равномерно, то можно считать, что у дна и на поверхности поддерживаются постоянные температуры, снизу - Т1, сверху - Т2. Пока разность температуры DТ = Т1 - Т2невелика, частички порошка неподвижны, а следовательно, неподвижна и жидкость.

Будем плавно увеличивать температуру Т1. С ростом разности температур до значения DТc наблюдается все та же картина, но когда DТ > DТc, вся среда разбивается на правильные шестигранные ячейки (см. Рис. 3.1) в центре каждой из которых жидкость движется вверх, по кроям вниз. Если взять другую сковороду, то можно убедиться, что величина возникающих ячеек практически не зависит от ее формы и размеров. Этот замечательный опыт впервые был проделан Бенаром в начале нашего века, а сами ячейки получили название ячеек Бенара.

Элементарное качественное объяснения причины движения жидкости заключается в следующем. Из-за теплового расширения жидкость расслаивается, и в более нижнем слое плотность жидкости r1 меньше, чем в верхнем r2. Возникает инверсный градиент плотности, направленный противоположно силе тяжести. Если выделить элементарный объем V, который немного смещается вверх в следствии возмущения, то в соседнем слое архимедова сила станет больше силы тяжести, так как r2 > r1. В верхней части малый объем, смещаясь вниз, поподает в облость пониженной плотности, и архимедова сила будет меньше силы тяжести FA < FT, возникает нисходящее движение жидкости. Направление движения нисходящего и восходящего потоков в данной ячейке случайно, движение же потоков в соседних ячейках, после выбора направлений в данной ячейке детерминировано. Полный поток энтропии через границы системы отрицателен, то есть система отдает энтропию, причем в стационарном состоянии отдает столько, сколько энтропии производится внутри системы (за счет потерь на трение).

dSe q q T1 - T2

= ¾ - ¾ = q * ¾¾¾ < 0 (3.1)

dt T2 T1 T1 * T2

Образование именно сотовой ячеистой структуры объясняется минимальными затратами энергии в системе на создание именно такой формы пространственной структуры. При этом в центральной части ячейки жидкость движется вверх, а на ее периферии - вниз.

Дальнейшее сверхкритическое нагревание жидкости приводит к разрушению пространственной структуры - возникает хаотический турбулентный режим.

Рис. 3.2. Иллюстрация возникновения тепловой конвекции в жидкости.

К этому вопросу прикладывается наглядная иллюстрация возникновения тепловой конвекции в жидкости.

 

 

ЗАКЛЮЧЕНИЕ.

Мы видели, что необратимость времени тесно связана с неустойчивостями в открытых системах. И.Р. Пригожин определяет два времени. Одно - динамическое, позволяющее задать описание движения точки в классической механике или изменение волновой функции в квантовой механике. Другое время - новое внутренние время, которое существует только для неустойчивых динамических систем. Оно характеризует состояние системы, связанное с энтропией.

Процессы биологического или общественного развития не имеют конечного состояния. Эти процессы неограниченны. Здесь, с одной стороны, как мы видели, нет какого-либо противоречия со вторым началом термодинамики, а с другой стороны - четко виден поступательный характер развития (прогресса) в открытой системе. Развитие связано, вообще говоря, с углублением неравновесности, а значит, в принципе с усовершенствованием структуры. Однако с усложнением структуры возрастает число и глубина неустойчивостей, вероятность бифуркации.

Успехи решения многих задач позволили выделить в них общие закономерности, ввести новые понятия и на этой основе сформулировать новую систему взглядов - синергетику. Она изучает вопросы самоорганизации и поэтому должна давать картину развития и принципы самоорганизации сложных систем, чтобы применять их в управлении. Эта задача имеет огромное значение, и, по нашему мнению, успехи в ее исследовании будут означать продвижение в решении глобальных задач: проблемы управляемого термоядерного синтеза, экологических проблем, задач управления и других.

Мы понимаем, что все приведенные в работе примеры относятся к модельным задачам, и многим профессионалам, работающим в соответствующих областях науки, они могут показаться слишком простыми. В одном они правы: использование идей и представлений синергетики не должно подменять глубокого анализа конкретной ситуации. Выяснить, каким может быть путь от модельных задач и общих принципов к реальной проблеме - дело специалистов. Кратко можно сказать так: если в изучаемой системе можно выделить один самый важный процесс (или небольшое их число) то проанализировать его поможет синергетика. Она указывает направление в котором нужно двигаться. И, по-видимому, это уже много.

Исследование большинства реальных нелинейных задач было невозможно без вычислительного эксперимента, без построения приближенных и качественных моделей изучаемых процессов (синергетика играет важную роль в их создании). Оба подхода дополняют друг друга. Эффективность применения одного зачастую определяется успешным использованием другого. Поэтому будущее синергетики тесно связано с развитием и широким использованием вычислительного эксперимента.

Изученные в последние годы простейшие нелинейные среды обладают сложными и интересными свойствами. Структуры в таких средах могут развиваться независимо и быть локализованы, могут размножаться и взаимодействовать. Эти модели могут оказаться полезными при изучении широкого круга явлений.

Известно, что имеется некоторая разобщенность естественно научной и гуманитарной культур. Сближение, а в дальнейшем, возможно, гармоническое взаимообогащение этих культур может быть осуществлено на фундаменте нового диалога с природой на языке термодинамики открытых систем и синергетики.

 

ЛИТЕРАТУРА:

1.Базаров И.П. Термодинамика. - М.: Высшая школа, 1991 г.

2.Гленсдорф П., Пригожин И. Термодинамическая теория структуры, устойчивости и флуктуаций. - М.: Мир, 1973 г.

3.Карери Д. Порядок и беспорядок в структуре материи. - М.: Мир, 1995 г.

4.Курдюшов С.П., Малинецкий Г.Г. Синергетика - теория самоорганизации. Идеи, методы перспективы. - М.: Знание, 1983 г.

5.Николис Г., Пригожин И. Самоорганизация в неравновесных системах. - М.: Мир, 1979 г.

6.Николис Г., Пригожин И. Познание сложного. - М.: Мир, 1990 г.

7.Перовский И.Г. Лекции по теории дифференциальных уравнений. - М.: МГУ, 1980 г.

8.Попов Д.Е. Междисциплинарные связи и синергетика. - КГПУ, 1996 г.

9.Пригожин И. Введение в термодинамику необратимых процессов. - М.: Иностранная литература, 1960 г.

10.Пригожин И. От существующего к возникающему. - М.: Наука, 1985 г.

11.Синергетика, сборник статей. - М.: Мир, 1984 г.

12.Хакен Г. Синергетика. - М.: Мир, 1980 г.

13.Хакен Г. Синергетика. Иерархия неустойчивостей в самоорганизующихся системах и устройствах. - М.: Мир, 1985 г.

14.Шелепин Л.А. В дали от равновесия. - М.: Знание, 1987 г.

15.Эйген М., Шустер П. Гиперцикл. Принципы самоорганизации макромолекул. - М.: Мир, 1982 г.

16.Эткинс П. Порядок и беспорядок в природе. - М.: Мир, 1987 г

 




Поделиться с друзьями:


Дата добавления: 2015-05-09; Просмотров: 409; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.011 сек.