Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Вес полушарий головного мозга детей 1 страница




_


Глава 6. Нейропсихическая регуляция индивидуального развития человека

ского и женского организмов. Эти различия, конечно, не абсолютны, и они не возрас­тают, а уменьшаются по мере перехода от низших к высшим генераторам энергии, включая большие полушария. Но тем не менее половые различия в энергетических потоках более значительны и существенны, чем в информационных. Поскольку био­логическое регулирование обеспечивает строгое взаимосоответствие между инфор­мационными и энергетическими потоками, постольку в процессе онтогенетической эволюции с изменением энергетического баланса перестраивается констелляция ин­формационных систем, а эта последняя воздействует на последующий ход метаболи­ческих процессов организма.

В связи с этим особый интерес представляет онтогенетическая эволюция подкор­ковых образований, которыми завершается ретикулярная формация, охватывающая мозговой ствол и эти образования. Ранее предполагалось, что подкорковые образова­ния созревают если не в эмбриональный период, то в самые первые годы жизни ребен­ка. Вообще созревание головного мозга в детском и подростковом возрасте стало трак­товаться преимущественно как созревание функций.

Между тем имеются фундаментальные доказательства того, что подкорковые об­разования растут и развиваются вплоть до достижения человеком взрослого состоя­ния. Имеет место, следовательно, длительный процесс морфогенеза механизмов, че­рез которые организуются интроцептивные сигналы и осуществляется церебральная настройка внутренней среды.

В этом отношении весьма важно авторитетное заявление руководителя многолет­них морфологических исследований детского мозга С. А. Саркисова. В предисловии к коллективному обобщающему труду Московского института мозга он пишет следу­ющее: «На основании всех проведенных исследований можно считать установленным, что подкорковые образования растут и развиваются вплоть до взрослого состояния. Эти данные, полученные при изучении клеточного строения коркового конца и под­корковых образований различных анализаторов, дают все основания, вопреки мне­нию некоторых зарубежных авторов, для утверждения положения о взаимосвязи раз­вития коры и подкорковых образований, а также о продолжающемся развитии не толь­ко коры, но и ближайшей подкорки до взрослого состояния»10.

Можно полагать поэтому, что созревание одного из основных субстратов органи­ческих потребностей и элементарных эмоций охватывает ряд фаз детства и отрочества. Рост и созревание коры головного мозга происходят на протяжении всего детства и от­рочества, вплоть до взрослого состояния, но гетерохронно по различным полям, обла­стям и межобластным структурам. Темпы созревания различных мозговых структур в разные периоды жизни постепенно замедляются, но именно при этом замедлении за­вершается морфогенез сложных субстратов нервно-психической деятельности.

Так, например, морфогенез различных полей височной (преимущественно слухо­вой) зоны, в общем, завершается к семи годам, когда эта зона по величине поверхно­сти приближается к размерам во взрослом мозгу11. Но вместе с тем филогенетически новые поля (44-е и 45-е) лобной области, имеющие преимущественное отношение

10 Развитие мозга ребенка / Под ред. С. А. Саркисова. — М.: Медицина, 1965. — С. 9.

11 Височная область. Внутреннее коленчатое тело, слуховой анализатор/В. А. Абовян, А. С. Арутюнова.
И. И. Глезер, Т. М. Мохова // Там же. — Гл. 5; Кононова Е. П. Лобная область // Там же. — Гл. 9.


Человек как предмет познания

к речедвигательному анализатору, дифференцируются на более поздних этапах раз­вития (после семи лет).

Еще более показательны данные Н. С. Преображенской относительно роста поверх­ности коры затылочной (преимущественно зрительной) области12. К двум годам жизни эта поверхность уже достигает 71,5 % от всей величины в мозгу взрослого человека. К семи годам она увеличивается до 83,5 %, затем темпы роста замедляются, но все же рост продолжается до достижения человеком взрослого состояния. Установлено, что филогенетически более новые поля затылочной области достигают соотношений, ха­рактерных для развитого, взрослого мозга, в поздние сроки постнатального детства.

Поскольку кору больших полушарий следует рассматривать как высший регуля­тор, по отношению к которому субординированы все нижележащие отделы головного мозга, постольку особенно важны знания о неравномерном созревании корковых структур (областей и подобластей), с которыми специфически связаны определенные психофизиологические функции43.

Поверхности мозговых структур к семилетнему возрасту достигают величины поверхностей соответствующих структур взрослого человека лишь в основном, так как разность величин между отдельными структурами колеблется между 91,6 и 95,0 % (по отношению к величине взрослого мозга). Таким образом, морфогенез мозга завер­шается лишь после семилетнего возраста.

Еще более важным фактом является неравномерность созревания разных струк­тур в одни и те же периоды. В этом отношении резко выделяется средняя височная подобласть. Все сопоставляемые подобласти, кроме этой, в возрасте 1 года достигают более половины поверхности соответствующих структур мозга взрослого. Между тем поверхность средней височной подобласти составляет в это же время всего 19,3 % от поверхности данной структуры у взрослого. В 2 и 4 года отставание роста поверхно­сти этой структуры от других увеличивается, достигая разности в 50 %, но к семилет­нему возрасту показатели почти сравниваются за счет резкого, скачкообразного при­роста субстрата средней височной подобласти между 4-7 годами жизни.

Гетерохронность созревания различных полей в еще большей мере характерна для лобной области человека, как это показано Е. П. Кононовой. Говоря о росте поверхности коры в этой области, Е. П. Кононова отмечает, что «по отдельным полям она сильно колеблется в зависимости от расположения поля. Так, например, величина поверхности коры, расположенной в борозде, в поле 10 — 69-70 %, в полях 11,12 — 52-54 %»14. Су­щественно, что поля, филогенетически более старые, достигают окончательного разви­тия быстрее. Поля, филогенетически новые, развиваются медленнее и заканчивают свое развитие в более поздние возрасты. По данным Е. П. Кононовой, «в некоторых полях особенно увеличивается поверхность к двухлетнему возрасту. В некоторых полях уве­' личение поверхности заканчивается в возрасте 7-12 лет»15.

Гетерохронность созревания является закономерностью общего характера, отно­сящейся к каждому из больших полушарий в целом, если сопоставлять имеющиеся данные об их морфогенетических различиях, например по весу. По данным П. Пфи-

12 Преображенская Н. С. Затылочная область // Там же. — Гл. 4.

13 См. табл. 189, 190, 191 в кн.: Блинков С. М., Глезер И. И. — Указ. соч.

14 Кононова Е. П. Лобная область // Развитие мозга ребенка. — С. 191-192.

15 Там же. - С. 190.


Глава 6. Нейропсихическая регуляция


индивидуального развития человека


стера и 3. Зивс, приведенным С. М. Блинковым и И. И. Глезером, вес обоих полуша­рий в граммах (абсолютный) и в процентах (к общему весу головного мозга в данный период) полностью не совпадает ни в один из периодов раннего онтогенеза (до 4-4,5 лет жизни). Приведем в извлечениях эти интересные сопоставления (табл. 24)16.



Таблица 24


 


Возраст


Левое полушарие

Абсолютный вес


%


Правое полушарие

Абсолютный вес


%


 


3 недели 2,5 месяца 12 месяцев

2,5 года 4 года

3 недели

2,5 месяца

6 месяцев

12 месяцев

2,5 года

4,5 года


220 270 420 432 500

226 225 290 406 450 473


 

Мальчики    
45,36   45,8
44,2   43,0
42,0   42,5
43,0   43,4
42,8   42,8
Девочки    
45,9   45,3
45,5   45,0
44,0   43,4
44,7   44,5
44,0   43,4
43,8   43,2

Естественно, что разность величин в гетерохронном развитии обоих полушарий всю­ду незначительна, поскольку полушария составляют единое целое. Однако полностью тождественными являются относительные величины обоих полушарий только в четы­рехлетнем возрасте у мальчиков. У них наблюдается смена трех типов отношений меж­ду обоими полушариями (по весу): 1) преобладание веса правого полушария (в 3 неде­ли, 12 месяцев и 2,5 года); 2) преобладание веса левого полушария (в 2,5 месяца) и 3) равенство относительных величин веса (в 4 года).

Как и у мальчиков, у девочек наблюдается некоторое различие в приросте веса левого и правого полушарий, но оно носит однозначный характер: во все периоды уве­личение веса левого полушария обгоняет аналогичное увеличение веса правого полу­шария. До 4,5 лет эта тенденция сохраняется с поразительным постоянством, что сви­детельствует о более раннем созревании доминантного полушария (в речевом и пси­хомоторном отношении) у девочек17. Возможно, что такое явление связано с другими

18 Блинков С. М., Глезер И. И. Мозг человека в цифрах и таблицах. — М.: Медицина, 1964. — С. 338.

17 В этой связи уместно вновь сослаться на экспериментально-психологические данные Д. Палермо, Мак-Карти и др. о том, что «девочки оказываются более продвинутыми в своем речевом развитии, чем маль­чики» (Палермо Д. Словесные ассоциации и речевое поведение детей // Изучение развития и поведе­ния: Сб. — М.: Просвещение, 1966).


особенностями нейрогуморального развития, обусловленными фактором полового диморфизма, о котором упоминалось выше.

Приведенные морфогенетические данные говорят о том, что гетерохронность со­зревания мозговых структур относится не только к коре подобластей и областей, но и к полушариям в целом, причем мера доминантности изменяется в ходе онтогенети­ческого развития. Это значит, что само явление доминантности левого полушария весьма относительно даже с точки зрения морфологии мозга.

В этой связи весьма показательно мнение С. М. Блинкова, согласно которому «уже сейчас можно сделать твердый вывод, что одни корковые поля имеют большую пло­щадь в правом полушарии, а другие поля имеют большую площадь в левом полуша­рии того же мозга. Этот вывод вполне соответствует клиническим наблюдениям, из которых следует, что редко встречаются люди "абсолютные правши" или "абсолют­ные левши". Как правило, доминантность левого полушария в отношении одних (двигательных, зрительных, речевых) функций сочетается у одного и того же челове­ка с доминантностью правого полушария относительно других функций»18.

Интересно отметить, что аналогичное положение было сформулировано нами не­сколько раньше на основании психофизиологических данных19, часть из которых рас­сматривается ниже.

Благодаря фундаментальным исследованиям С. Б. Дзугаевой мы теперь знаем последовательность роста и созревания проводящих путей. Первым складывается комплекс проекционных путей, затем комиссуральных и позже всех ассоциационных, причем созревание последних происходит вплоть до взрослого состояния20.

Для последующего изложения важно подчеркнуть новый, онтогенетический подход к комиссуральным связям, объединяющим оба полушария головного мозга. Главнейший комплекс этих связей — мозолистое тело — согласно новейшим данным, в возрасте 7 лет и позднее заметно увеличивается в объеме. Рельеф мозолистого тела в иостнатальном детстве усложняется за счет интенсивного роста концентрирован­ных пучков, направляющихся к лобным, затылочным и височным долям обоих по­лушарий. Все это свидетельствует о более позднем и более длительном, чем думали раньше, процессе созревания механизмов, обеспечивающих парную сопряженную деятельность обоих полушарий и единство мозговой структуры. Этим, вероятно, можно объяснить неустойчивость и даже хрупкость механизмов передачи импуль­сов из одного полушария в другое и сложность интеграции, синтеза связей в мозгу ребенка.

Есть еще одна закономерность созревания мозговых структур и проводящих пу­тей, особенно проекционных и ассоциационных, — постепенное увеличение различий между ними за счет возрастания явления структурной асимметрии между важнейши­ми отделами обоих полушарий и связанных с ними проводящих путей. Об этом Дзуга-ева пишет следующее: «По нашим данным, одной из характерных особенностей про-

18 Блинков С. М., Глезер И. И. — Указ. соч. — С. 236.

19 Ананьев Б. Г. Билатеральное регулирование как механизм поведения // Вопр. психологии. — 1963 -
№ 5; Его же. Пространственное различение. — Л.: Изд. ЛГУ, 1955 и др.

20 Дзугаева С. Б. Онтогенез проводящих путей мозга человека // Развитие мозга ребенка / Под ред. С. А. Сар-
кисова. — М: Медицина, 1965. -


Глава 6. Нейропсихическая регуляция индивидуального развития человека

водящих путей головного мозга человека является асимметрия в процессе их разви­тия. При этом надо отметить, что асимметрия особо отмечается в филогенетически более новых отделах мозга»21.

Все это показывает сложный процесс становления субординационных отношений между частями мозга, рассматриваемого как иерархическая система управления. Эти субординационные отношения между корой и подкорковыми образованиями больших полушарий, большими полушариями и мозговым стволом складываются постепенно, причем на взаимоотношения между большими полушариями и нижележащими отдела­ми головного мозга влияет возрастающая дифференциация самих больших полушарий.

Мы специально остановились на морфогенезе и структуре иерархической органи­зации мозга потому, что в последние годы преобладала тенденция обособления функ­ций, динамики мозговой деятельности от их субстрата. Такое обособление нарушает принцип единства структуры и динамики, важность которого особенно велика для построения теории нейропсихической регуляции. Специалисты в области не только генетической психологии, но и возрастной физиологии нередко полагают, что морфо­генез всех отделов головного мозга завершается в самый ранний период постнаталь-ного детства и поэтому развитие мозга осуществляется только путем образования и преобразования функциональных систем.

Вышеприведенные данные современной морфологии мозга показывают, однако, что созревание мозговых структур захватывает ряд фаз развития, в связи с чем субор­динационные отношения раскрываются в своем истинном значении — как продукт развития (не только филогенетического, но и онтогенетического).

После проделанного нами необходимого морфогенетического экскурса можно охарактеризовать некоторые существенные функциональные, психофизиологические эффекты субординационных отношений между выше- и нижележащими отделами головного мозга. Прежде всего укажем на одно важное наблюдение Л. С. Выготского, сопоставившего феномены развития и распада высших психических функций. Срав­нивая агнозии взрослого и ребенка, Л. С. Выготский высказал предположение о том, что существует известная закономерность: «При страдании одного и того же участка или центра у взрослого больше страдает нижележащий, чем вышележащий, центр... У ребенка же при аналогичном поражении центра высший центр страдает больше, чем низший. Взаимная зависимость отдельных центров оказывается в том и другом слу­чае обратной»22. Следовательно, локализация высших психических функций может быть правильно понята только как хроногенная (Л. С. Выготский).

Примечательно, что в 1963 г. А. Р. Лурия, касаясь этого вывода Л. С. Выготского, писал следующее: «Нужно признать, что несмотря на то, что с того времени, когда эти положения были впервые выдвинуты, прошло более четверти века, в науке еще не сде­лано нужных шагов для развития этого совершенно нового подхода к конкретному раскрытию принципов хроногенной локализации в коре головного мозга»23.

21 Дзугаева С. Б. Онтогенез проводящих путей мозга человека // Развитие мозга ребенка / Под ред. С. А. Сар-
кисова. — М.: Медицина, 1965. — С. 243.

22 Выготский Л. С. Развитие высших психических функций. — М.: Изд. АПН РСФСР, 1960. — С. 379.

23 Лурия А. Р. Мозг человека и психические процессы. — М.: Изд. АПН РСФСР, 1963.


Человек как предмет познания

Между тем именно за последнюю четверть века сложилась нейропсихология, для которой эти принципы были бы особенно полезны, хотя и недостаточны, поскольку Л. С. Выготский имел в виду преимущественно прямые субординационные зависимо­сти. Известно, однако, что крупнейшие успехи электрофизиологии и функциональ­ной морфологии головного мозга за последнее десятилетие привели к замечательным открытиям в области восходящей ретикулярной формации и ее влияний на вышеле­жащие отделы головного мозга. Можно сказать, что впервые получены характеристи­ки обратных субординационных связей, в частности при регулировании потоков сен­сорной информации.

Экспериментально установлено,что ретикулярная формация осуществляет бло­каду афферентных импульсов и участвует в образовании механизмов отбора импуль­сов, внимания и привыкания к стимулам. Однако это участие может быть правильно понято только в связи с деятельностью больших полушарий. Следует согласиться с суждениями Дж. Ф. Росси и А. Цанкетти по этому вопросу: «...предположение, что восходящая ретикулярная система должна иметь более тонкие свойства, чем необхо­димые для простой регуляции механизма бодрствования, является одним из самых интересных теоретических выводов со времени открытия самой восходящей ретику­лярной формации. За последние годы производились попытки коррелировать актив­ность ретикулярной формации также и с другими психологическими явлениями, кро­ме внимания и привыкания»24.

Авторы имели здесь в виду различные моменты научения, особенно так называе­мого позитивного обучения. Именно в связи с исследованием процессов научения и других форм поведения при электрическом раздражении глубоких центров в мозгу человека были обнаружены механизмы подкрепления образующихся временных свя­зей, т. е. безусловнорефлекторные основания мотивации поведения. Разработка и при­менение метода самораздражения с помощью вживленных в мозг электродов позво­лили наметить своеобразную топографию голода, полового инстинкта, удовольствия и страдания — в общем, элементарных состояний, эмоций и аффектов.

Один из основных исследователей в этой области Дж. Олдз установил, что «мозг со­стоит из трех типов клеток: 1) клеток, к возбуждению которых организм стремится; 2) клеток, возбуждения которых организм избегает, и 3) клеток, возбуждения которых организм не добивается, но и не избегает»25. По данным Олдза, Дельгадо, Робертса— Миллера и др., наибольшее количество клеток в мозгу животных (60 % всех клеток) являются мотивационно нейтральными. Клетки позитивного, или подкрепляющего, типа составляют около 35 %, а отрицательного, или наказывающего, типа — около 5 % всех клеток.

Дж. Олдз пишет по этому поводу, что, «если мыслить в понятиях клеточного воз­буждения или покоя, имеются гораздо большие и более многочисленные группы, воз­буждения которых организм добивается, чем клеточные группы, к состоянию покоя которых он стремится»26.

24 Росси Дж. Ф., Цанкетти А. Ретикулярная формация ствола мозга. — М.: ИЛ, 1960. — С. 200.

23 ОлдзДж. Выявление подкрепляющих систем мозга// Механизмы целого мозга: Сб. — М.: ИЛ, 1963. —

С. 200. 26 Там же. - С. 201.


Глава 6. Нейропсихическая регуляция индивидуального развития человека

Эксперименты с вживлением электродов интересны не только новой возможно­стью локализации подкрепляющих эффектов, но и доказательствами прямого влия­ния поведения, активных его функций на динамику глубоких структур мозга. На эту сторону проблемы нейрофизиологами и психофизиологами обращено особое вни-мание27.

Прогресс электрофизиологии глубоких структур мозга и психофармакологии обеспечил серьезное расширение круга научных знаний о механизмах эмоций и их расстройствах (в состояниях стресса и при заболеваниях мозга)28. В этом отношении особенно значительны исследования Н. П. Бехтеревой, А. Н. Бондарчука, В. М. Смир­нова, А. И. Трохачева, обнаруживших при электрических воздействиях на глубокие структуры человеческого мозга сложный комплекс психофизиологических явлений, в том числе и эмоциональных. Примечательно, что эти воздействия, как подчеркива­ют авторы, «не вызывали у больных нарушений сознания. О ясности сознания свиде­тельствовала сохранность ориентировки в месте, времени, предметной обстановке, лицах; не нарушалось сознание своего "Я" и сознание болезни»29.

Вместе с тем электростимуляция определенных районов глубоких структур мозга человека выявила своеобразные эффекты, связанные с функцией этих структур в ре­гуляции поведения. К этим эффектам относятся: тактильные и болевые «сенсорные эффекты», сенестопатии и другие ощущения, входящие в структуру эмоций, расстрой­ства схемы тела и т. д.

Что касается собственно эмоциональных проявлений при электрических воздей­ствиях, то они имели место далеко не во всех случаях и зависели от ряда факторов. Из исследованных 400 точек мозга подавляющее большинство оказались эмоционально нейтральными и к эмоциональным зонам можно было отнести не более 10 %. При их стимуляции возникали не только элементарные витальные эмоции, но и сложные, «например приятные переживания при сладострастных ощущениях типа оргазма»30, беспредметные аффекты, усиления наличного эмоционального фона (настроения) или «развития патологического эмоционального состояния вне связи с предшествую­щим ему настроением»31. Были отмечены изменения в уровнях асимметрии между длительностями восходящих и нисходящих фаз волн32.

Исследования на обезьянах выявили ряд существенных сдвигов мотивации по­ведения при электрическом раздражении подкорки, благодаря чему были выяснены основные характеристики так называемых старт- и стоп-зон. Для старт-зоны, по опре­делению Дж. Лилли, свойственны «положительное подкрепление, положительная реакция, влечение; для стоп.-зоны, напротив, характерны наказания, отрицательное подкрепление, отрицательная реакция, избегание»33.

27 См., например: Вулдридж Д. Механизмы мозга. — М.: Мир, 1965; Мэгун Г. Бодрствующий мозг. — М.:
ИЛ, 1961.

28 Гелыорн Э., Луфборроу Дж. Эмоции ц эмоциональные расстройства. — М.: Мир, 1966.

29 Физиология и патофизиология глубоких структур мозга человека / Н. П. Бехтерева, А. Н. Бондарчук,
В. М. Смирнов, А. И. Трохачев. — М.: Медицина, 1967. — С. 190.

30 Там же. - С. 202.

31 Там же. - С. 204.

32 Там же. - С. 89.

33 Лилли Дж. Мотивированное поведение при раздражении подкорки // Механизмы целого мозга: Сб. —
ИЛ, 1963. - С. 236.


Человек как предмет познания

Глубокие структуры мозгового ствола и подкорки играют активную роль в иерар­хической системе регулирования поведения и жизнедеятельности. Функциональное состояние самой коры, составляющей высшее звено этой системы, во многом определя­ется организацией как информационных, так и энергетических потоков на нижележа­щих уровнях иерархической системы. Возможно приурочение информационных и энергетических регуляторов к различным частям, или, говоря современным научно-техническим языком, блокам иерархической системы регулирования34. Однако нет оснований отрицать участие ретикулярной формации в регуляции информационных потоков, особенно из внутренней среды и через неспецифические афферентные меха­низмы. Тем более нет основания полностью сводить к глубоким структурам мозга «энер­гетический блок», поскольку и кора больших полушарий принимает активное участие в регуляции обмена веществ.

В современной физиологии накоплена огромная масса экспериментальных дан­ных, обнаруживающих различные феномены и механизмы условнорефлекторной ре­гуляции обмена- веществ. Среди исследований нервной регуляции метаболических процессов особенно выделяются работы Р. П. Ольнянской и ее сотрудников. Важным положением этих исследований является вывод о том, что «любая энергетическая за­трата есть процесс не только регулируемый, но и процесс, регистрируемый в цент­ральной нервной системе... Обмен в клетках и тканях не только стимулируется и тор­мозится нервно-регуляторными механизмами, но и сами клеточные и тканевые про­цессы оказывают постоянное влияние на нервные центры»35. Следовательно, имеется сложная цепь связей между метаболическими и нервно-рефлекторными процессами в организме и самом мозгу.

Новейшими исследованиями доказано, что энергетические процессы не только регулируются, но и «регистрируются» высшими отделами мозга, который непрерыв­но получает, таким образом, информацию о метаболических процессах в организме. Больше того, имеются основания предполагать наличие различных метаболических коррелятов основных нервных процессов в больших полушариях головного мозга. «Процессы возбуждения в центральной нервной системе, — пишет Р. П. Ольнян-ская, — характеризуются, как правило, активацией окислительных процессов и соот­ветственно повышением уровня общего газообмена, а торможение — накоплением энергетических ресурсов и понижением уровня общего газообмена. Если считать, что энергетическим источником возбудительного характера могут служить дыхательные субстраты свободного окисления, то в качестве источников процессов торможения можно предположить распад богатых макроэргических соединений фосфора»36.

Это предположение, как мы думаем, приближает к познанию феномена, который назван Уолтером Греем «ахиллесовой пятой мозга». Об этом феномене он пишет следу-34 Так, например, А. Р. Лурия в последнее время выделяет в аппарате головного мозга человека три блока: 1) группу аппаратов, расположенных в глубине мозга и имеющих прямое отношение к обмену и к регуляции внутренней среды организма (энергетический блок); 2) группу аппаратов, принимающих, перерабатывающих и хранящих информацию; 3) группу аппаратов, профаммирующих и регулирующих сложные действия, процесс человеческой деятельности (Лурия А. Р. Пульт управления организмом //' Известия. — 1968, январь. — № 7).

35 Олышнская Р. П. Очерки по регуляции обмена веществ. — М: Наука, 1964. — С. 195.

36 Там ж е. - С. 198.


Глава 6. НейропсихичеЫая регуляция индивидуального развития человека

ющее: «Странным образом кора больших полушарий и подчиненные ей узлы плохо за­щищены против недостатка кислорода. Человек, погибающий в атмосфере угарного газа или разреженного воздуха, редко испытывает острое недомогание. Когда содержание кислорода в его крови падает примерно наполовину, он спокойно теряет сознание, причем изменения электрической активности его мозга могут быть минимальными, а часто их и вовсе нет... Его потребность в кислороде и сахаре постоянна и жестка. Но недостаток сахара может дать о себе знать, недостаток кислорода — никогда. Аго­ния при удушении, судорожные вздохи и одышка на самом деле объясняются накоп­лением в крови углекислоты — продукта окисления. И это мозг ощущает, задыхаясь, как от собственного дыма, хотя он и не в состоянии обнаружить, где перестала дей­ствовать отдушина»37.

Близко к этому положению нейрофизиолога У. Грея положение известного биохи­мика Р. Уильямса: «Мозг, потребляющий "горючее" в огромном количестве, крайне чув­ствителен к его отсутствию. Хотя у взрослого человека вес мозга составляет только око­ло 2 % от веса тела, мозг потребляет примерно 25 % всего количества поглощаемого ор­ганизмом кислорода»38. Р. Уильяме особенно отмечает начальный и конечный этапы онтогенетической эволюции в отношении потребления кислорода. У маленького ребенка около половины общего обмена организма приходится на долю мозга39. Старческое слабо­умие связывается многими исследователями с тем, что мозг не может получать достаточ­ное количество крови из-за отложения в стенках сосудов холестерина. В процессах старе­ния вообще играют немаловажную роль различные проявления гипоксии.

В современной науке накапливается все большее число данных, относящихся к психофизиологической характеристике гипоксии, благодаря которым удается не только более полно описать психофизиологические сдвиги и последствия состояния гипоксии, но и практически решать многие вопросы ее терапии и профилактики, осо­бенно при профессиональном отборе летчиков. Обращено большое внимание на воз­никающие при гипоксии сенсорно-моторные, мнемичеекпе, вербально-логические и эмоциональные изменения, включающие столь разнородные явления, как эйфория, повышенная раздражительность, заторможенность и сонливость. Жизненно важным является сохранение сознания. По многим данным, время сохранения при взрывной декомпрессии равно 10-15 с.




Поделиться с друзьями:


Дата добавления: 2015-05-09; Просмотров: 494; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.056 сек.