Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Захист від УФ випромінювань




Ефективність деяких теплових екранів

 

Тип екрана Граничне теплове навантаження, Еф, кВт/м2 Ефективність екрана
Футерован і екрани: матеріал футеровки – цегла матеріал футеровки - азбест    
10,5 0,3 0,6
Теплоізоляційні екрани: сітки чіпки (ланцюги) силікатне і кварцове скло водяна плівка Тепловідвідні екрани   1.05 4.9 0,7-1,4 1.7 14,0   0.67 0.7 0,7 0,9 0,9

 

Спецодяг повинен мати захисні властивості, які виключають можливість нагріву його внутрішніх поверхонь на будь-якій ділянці до температури 313 К (40°C) у відповідності зі спеціальними ДСТами (ГОСТ 12.4.176-89, ГОСТ 12.4.016-87).

У виробничих приміщеннях, в яких на робочих місцях неможливо встановити регламентовані інтенсивності теплового опромінення працюючих через технологічні вимоги, технічну недосяжність або економічно обґрунтовану недоцільність, використовуються обдування, душування, водоповітряне душування і т. ін.

У разі теплового опромінення від 140 до 350 Вт/м2 необхідно збільшувати на постійних робочих місцях швидкість руху повітря на 0,2 м/с за нормовані величини; у разі теплового опромінення, що перевищує 350 Вт/м2, доцільно застосовувати повітряне душування робочих місць (ДНАОП 0.0311.23-82), охолодження стін, підлоги, стелі, створення оазису; вживати підсолену воду (водний розчин 0.5% NaCl). Застосовують раціональний питний режим, режим праці, гідро процедури.

 

Характеристика УФ випромінювань. Ультрафіолетові промені в електромагнітному спектрі розташовуються між тепловою і проникаючою радіацією і носять риси як тієї, так і іншої. Довжина хвилі 39016 нм з енергією кванта 3,56-123 еВ. За способом генерації вони відносяться до теплової частини випромінювання, а по дії на поглинаючі тіла – ближче підходять до проникаючої радіації, хоча викликають також і тепловий ефект. Іонізуюча радіація при дії на людину викликає іонізацію, а УФ

випромінювання викликають цю дію в меншій мірі. Енергії їх кванта достатньо для порушення атома. Енергія хімічного зв'язку, що утримує атоми в молекулі будь1якої хімічної сполуки, що входить до складу організму, не перевищує 4 еВ. Фотони з енергією 12–15 еВ здатні викликати іонізацію води, атомів водню, азоту, вуглецю. Виходячи з того, що вода і перераховані атоми складають основу живої тканини, випромінювання з енергією 12 еВ можна розглядати як нижню межу для високоорганізованих біологічних систем. Особливістю УФ випромінювань є їх висока сорбційність – їх поглинає більшість тіл.

Спектр УФ випромінювань має велику довжину і викликає різні дії. Він розбитий на наступні області: УФА (390–315 нм), УФВ (315–280 нм), УФС (280–6 нм). Температурні випромінювачі починають створювати УФ випромінювання за температури 19000С.

УФ випромінювання виникає під час роботи радіоламп, ртутних випрямлячів, експлуатації ОКГ, під час обслуговування ртутно-кварцових ламп, під час зварювальних робіт.

Інтенсивність УФ випромінювання і його спектральний склад на робочому місці залежить від температури нагрівача, наявності газів (озону), пилу і відстані від робочого місця до джерела випромінювання. Пил, газ, дим поглинають УФ випромінювання і змінюють його спектральну характеристику. Повітря практично не прозоре для λ < 185 нм через поглинання УФ випромінювання киснем. У зв'язку з тим, що УФ випромінювання розсіюються і поглинаються в запиленому середовищі й у газах, розрахувати рівні УФ випромінювання на визначеній відстані від джерела складно і їх тільки вимірюють.

УФ радіація викликає зміну складу виробничої атмосфери. Утворюються озон, оксиди азоту, перекис водню, відбувається іонізація повітря. Хімічна й іонізуюча дія УФ випромінювання обумовлює утворення в атмосфері ядер конденсації, на яких розсіюється світло й освітленість робочих місць знижується, утворюються тумани.

Вплив УФ випромінювання на організм людини. Шкідливий вплив УФ випромінювань на біологічні тканини пов'язаний з поглинанням випромінювання нуклеїновою кислотою і зведеними білками клітин і протіканням у цих з'єднаннях світлохімічних реакцій. Відбувається часткова загибель клітин шкіри, прискорена їх поліферація, зміна форми і розміру. УФ випромінювання діють як подразник на нервові закінчення шкіри, зумовлює зміни в організмі, викликає дерматити, екземи, набряклість. Має місце також утворення ракових пухлин довжиною хвилі 280–303 нм. Разом з цим УФ випромінювання впливають на центральну нервову систему, в результаті виникають загальнотоксичні симптоми – головний біль, підвищення температури, стомленість, нервові порушення.

Ступінь ураження шкіри УФ випромінювання ми залежить від кількості поглиненої енергії. Для появи ледь помітного почервоніння шкіри достатній потік енергії 30 Дж/см2 (в окремих випадках 8 Дж/см2). Для характеристики біологічної дії УФ випромінювання користаються визначенням – мінімальної еритемної дози (МЕД) – найменшої енергетичної дози опромінення, яке призводить через 8 годин до почервоніння шкіряного покриву (еритеми), що зникає на наступну добу. Еритемна одиниця – рівномірне випромінювання з довжиною хвилі 296,7 нм і густиною потоку 20 мВт/м2 (супроводжується різко вираженим почервонінням шкіри з больовим відчуттям).

Максимальний еритемний ефект приходиться на випромінювання з довжиною хвилі 260 нм. З λ < 290 нм УФ випромінювання поглинається шкірою цілком. Більш глибоких тканин досягають тільки 10% енергії з довжиною хвилі 290–320 нм і до 50% при λ = 320–380 нм.

Багаторазове, триваюче роками УФ опромінення прискорює старіння шкіри і збільшує ймовірність розвитку раку шкіри.

Велику небезпеку створюють УФ випромінювання для органів зору. Вони поглинаються в основному рогівкою і кон’юктивою. Найбільше ураження рогівки викликає λ = 288 нм. У кришталику, в основному, поглинаються УФ випромінювання з λ = 320–390 нм. Мінімальна величина енергії, що викликає відповідну реакцію в кришталику, в 2–3 рази вище, ніж відповідна величина її для рогівки. Тобто опік рогової оболонки відбудеться раніше, ніж виникне ураження кришталика.

Разом з негативною дією УФ випромінювання має доброчинну дію на людину за рахунок протікання фотохімічних реакцій, має бактерицидну дію, тобто УФ випромінювання має терапевтичну і тонізуючу дію.

Згідно СН там, де недостатній рівень УФ випромінювання (при використанні тільки штучного освітлення; наприклад, в умовах Заполяр’я), використовують разом із загальним освітленням і ультрафіолетове освітлення спеціальними еритемними лампами. Величина еритемного опромінення визначається поверхневою густиною еритемного потоку в міліер/м2, для якого припустиме значення дорівнює 7,5 мер/м2. Для лікувального опромінення УФ випромінювання використовують також і спеціальні світлолікувальні кабінети – фотарії.

Нормування УФ випромінювання. Нормування ультрафіолетового випромінювання у виробничих приміщеннях здійснюють згідно з санітарними нормами СН 4557188 (ДНАОП 0.0313.17188).

Допустимі значення густини ультрафіолетового випромінювання наведені у таблиці 2.26.

Таблиця 2.26




Поделиться с друзьями:


Дата добавления: 2015-05-07; Просмотров: 880; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.013 сек.