Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Достижения в основных направлениях современной химии




Зак 671 97


Химию принято подразделять на пять разделов: неор­ганическая, органическая, физическая, аналитическая и химия высокомолекулярных соединений.

Основными задачами неорганической химии являются: изучение строения соединений, установление связи строе­ния со свойствами и реакционной способностью. Также разрабатываются методы синтеза и глубокой очистки ве­ществ. Большое внимание уделяется кинетике и механизму неорганических реакций, их каталитическому ускорению и замедлению. Для синтезов все чаще применяют методы физического воздействия: сверхвысокие температуры и давления, ионизирующее излучение, ультразвук, магнитные поля. Многие процессы проходят в условиях горения или низкотемпературной плазмы. Химические реакции часто сочетают с получением волокнистых, слоистых и монокрис­таллических материалов, с изготовлением электронных схем.

Неорганические соединения применяются как конст­рукционные материалы для всех отраслей промышленнос­ти, включая космическую технику, как удобрение и кормо­вые добавки, ядерное и ракетное топливо, фармацевтиче­ские материалы.

Органическая химия — наиболее крупный раздел хи­мической науки. Если число известных неорганических веществ исчисляется тысячами, то органических веществ известно несколько миллионов. Общепризнано огромное значение химии полимеров. Так, еще в 1910 году С.В. Ле­бедев разработал промышленный способ получения бута­диена, а из него каучука.

В 1936 году У. Карозерс синтезирует «найлон», открыв новый тип синтетических полимеров — полиамиды. В 1938 году Р. Планкет случайно открывает тефлон, со­здавший эпоху синтеза фторполимеров с уникальной тер­мостабильностью, создаются «вечные» смазочные масла (пластмассы и эластомеры), широко используемые косми­ческой и реактивной техникой, химической и электротех­нической промышленностью. Благодаря этим и многим другим открытиям из органической химии выросла химия высокомолекулярных соединений (или полимеров).


Начавшиеся в 30-40-е годы широкие исследования фосфорорганических соединений (А.Е. Арбузов) привели к открытию новых типов физиологически активных соеди­нений — лекарственных препаратов, отравляющих ве­ществ, средств защиты растений и др.

Химия красителей практически дала начало химиче­ской индустрии. Например, химия ароматических и гетеро­циклических соединений создала первую отрасль химиче­ской промышленности, продукция которой ныне превосхо­дит 1 млрд. тонн, и породила новые отрасли — произ­водство душистых и лекарственных веществ.

Проникновение органической химии в смежные облас­ти — биохимию, биологию, медицину, сельское хозяйство — привело к изучению свойств, установлению структуры и синтезу витаминов, белков, нуклеиновых кислот, антибио­тиков, новых средств ускорения роста растений и средств борьбы с вредителями.

Ощутимые результаты дает применение математическо­го моделирования. Если нахождение какого-либо фарма­цевтического препарата или инсектицида требовало синтеза 10—20 тыс. веществ, то с помощью математического моде­лирования выбор делается лишь в результате синтеза не­скольких десятков соединений.

Роль органической химии в биохимии трудно переоце­нить. Так, в 1963 году В. Виньо синтезировал инсулин, также были синтезированы окситоцин (пептидный гормон), вазопрессин (гормон обладает антидиуретическим действи­ем), брадикинин (обладает сосудорасширяющим действи­ем). Разработаны полуавтоматические методы синтеза по­липептидов (Р. Мерифилд, 1962).

Вершиной достижений органической химии в генной инженерии явился первый синтез активного гена (X. Ко­рана, 1976). В 1977 году синтезирован ген, кодирующий синтез человеческого инсулина, а в 1978-м — ген сомато-статина (способен угнетать секрецию инсулина, пептидный гормон).

Физическая химия объясняет химические явления и устанавливает их общие закономерности. Физическая хи­мия последних десятилетий характеризуется следующими чертами: в результате развития квантовой химии (исполь­зует идеи и методы квантовой физики для объяснения химических явлений) многие проблемы химического строе-




Поделиться с друзьями:


Дата добавления: 2015-05-07; Просмотров: 469; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.008 сек.